首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126001--1)

新型矢量光场调控:简介、进展与应用(特邀综述)

Manipulation on Novel Vector Optical Fields: Introduction, Advances and Applications (Invited Review)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

作为光的一个基本属性, 偏振态提供的自由度对光场调控具有重要作用。具有空间结构偏振态分布的矢量光场因其具有不同于传统标量光场的独特性质而被应用于诸多领域, 但矢量光场的早期研究主要集中于柱对称的局域线偏振矢量光场。近年来, 偏振态分布更加丰富的新型矢量光场逐渐得到关注, 这些新型矢量光场的出现丰富了矢量光场的种类并提供了新的调控自由度, 被应用于焦场调控、光学微加工、光学微操纵和光信息传输等领域。综述了近年来出现的新型矢量光场, 包括柱坐标系中的杂化偏振矢量光场、庞加莱球相关的矢量光场、阵列矢量光场、多奇点矢量光场和其他非柱对称的矢量光场, 介绍了其进展、设计方案、实验生成、性质和相关应用。

Abstract

Polarization, as an intrinsic nature of light, is certainly of great importance to serve as a degree of freedom for manipulating light. The vector optical fields with inhomogeneous polarization distribution have been applied in many areas due to the unique feature with respect to the traditional scalar optical fields. However, the early study of vector optical fields mainly focused on the local linearly polarized vector optical fields with cylindrical symmetry. In recent years, novel vector optical fields with various polarization distributions have attracted significant interest. These new vector optical fields have not only enriched the family of the vector optical fields, but also provided new degrees of manipulation freedom. As a result, these new vector optical fields have been applied in realms such as manipulation of focal fields, optical micro-machining, optical micro-manipulation, and optical information transmission. In this paper, we present an overview of the recently appearing new kinds of vector optical fields, including hybridly polarized vector optical fields in cylindrical coordinates, vector optical fields associated with Poincaré sphere, array vector optical fields, vector optical fields with multiple polarization singularities, and other vector optical fields without cylindrical symmetry. The advances, design scheme, experimental generation, properties and related applications of these vector optical fields have been presented.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201939.0126001

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家自然科学基金(11534006, 11774183)、国家重点研发计划(2017YFA0303800, 2017YFA0303700)

收稿日期:2018-08-21

修改稿日期:2018-09-11

网络出版日期:2018-09-25

作者单位    点击查看

潘岳:南开大学物理科学学院, 弱光非线性光子学教育部重点实验室, 天津 300071曲阜师范大学物理工程学院, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
丁剑平:南京大学固体微结构物理国家重点实验室, 人工微结构科学与技术协同创新中心, 江苏 南京 210093
王慧田:南开大学物理科学学院, 弱光非线性光子学教育部重点实验室, 天津 300071南京大学固体微结构物理国家重点实验室, 人工微结构科学与技术协同创新中心, 江苏 南京 210093

联系人作者:王慧田(htwang@nju.edu.cn)

【1】Snitzer E. Cylindrical dielectric waveguide modes[J]. Journal of the Optical Society of America, 1961, 51(5): 491-498.

【2】Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 1972, 20(7): 266-267.

【3】Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation[J]. Proceedings of the IEEE, 1972, 60(9): 1107-1109.

【4】Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

【5】Marhic M E, Garmire E. Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides[J]. Applied Physics Letters, 1981, 38(10): 743-745.

【6】Tidwell S C, Ford D H, Kimura W D. Generating radially polarized beams interferometrically[J]. Applied Optics, 1990, 29(15): 2234-2239.

【7】Churin E G, Hoβfeld J, Tschudi T. Polarization configurations with singular point formed by computer generated holograms[J]. Optics Communications, 1993, 99(1/2): 13-17.

【8】Tidwell S C, Kim G H, Kimura W D. Efficient radially polarized laser beam generation with a double interferometer[J]. Applied Optics, 1993, 32(27): 5222-5229.

【9】Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23): 1948-1950.

【10】Jordan R H, Hall D G. Free-space azimuthal paraxial wave equation: The azimuthal Bessel-Gauss beam solution[J]. Optics Letters, 1994, 19(7): 427-429.

【11】Greene P L, Hall D G. Diffraction characteristics of the azimuthal Bessel-Gauss beam[J]. Journal of the Optical Society of America A, 1996, 13(5): 962-966.

【12】Hall D G. Vector-beam solutions of Maxwell’s wave equation[J]. Optics Letters, 1996, 21(1): 9-11.

【13】Greene P L, Hall D G. Focal shift in vector beams[J]. Optics Express, 1999, 4(10): 411-419.

【14】Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87.

【15】Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 358-379.

【16】Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

【17】Hao X, Kuang C F, Wang T T, et al. Phase encoding for sharper focus of the azimuthally polarized beam[J]. Optics Letters, 2010, 35(23): 3928-3930.

【18】Wang H F, Shi L P, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505.

【19】Kozawa Y, Sato S. Focusing property of a double-ring-shaped radially polarized beam[J]. Optics Letters, 2006, 31(6): 820-822.

【20】Wang X L, Ding J P, Qin J Q, et al. Configurable three-dimensional optical cage generated from cylindrical vector beams[J]. Optics Communications, 2009, 282(17): 3421-3425.

【21】Zhao Y Q, Zhan Q W, Zhang Y L, et al. Creation of a three-dimensional optical chain for controllable particle delivery[J]. Optics Letters, 2005, 30(8): 848-850.

【22】Gabriel C, Aiello A, Zhong W,et al. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes[J]. Physical Review Letters, 2011, 106(6): 060502.

【23】Varin C, Piché M. Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams[J]. Applied Physics B, 2002, 74(1): s83-s88.

【24】Novotny L, Beversluis M R, Youngworth K S, et al. Longitudinal field modes probed by single molecules[J]. Physical Review Letters, 2001, 86(23): 5251-5254.

【25】Ciattoni A, Crosignani B, Di Porto P, et al. Azimuthally polarized spatial dark solitons: Exact solutions of Maxwell''s equations in a Kerr medium[J]. Physical Review Letters, 2005, 94(7): 073902.

【26】Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Applied Physics A, 2007, 86(3): 329-334.

【27】Lou K, Qian S X, Wang X L,et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon[J]. Optics Express, 2012, 20(1): 120-127.

【28】Kawauchi H, Yonezawa K, Kozawa Y, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam[J]. Optics Letters, 2007, 32(13): 1839-1841.

【29】Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

【30】Wang X L, Li Y N, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10): 10786-10795.

【31】Lerman G M, Stern L, Levy U. Generation and tight focusing of hybridly polarized vector beams[J]. Optics Express, 2010, 18(26): 27650-27657.

【32】Beckley A M, Brown T G, Alonso M A. Full Poincaré beams[J]. Optics Express, 2010, 18(10): 10777-10785.

【33】Beckley A M, Brown T G, Alonso M A. Full Poincaré beams II: Partial polarization[J]. Optics Express, 2012, 20(9): 9357-9362.

【34】Milione G, Sztul H I, Nolan D A, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 2011, 107(5): 053601.

【35】Yi X N, Liu Y C, Ling X H, et al. Hybrid-order Poincaré sphere[J]. Physical Review A, 2015, 91(2): 023801.

【36】Ren Z C, Kong L J, Li S M,et al. Generalized Poincaré sphere[J]. Optics Express, 2015, 23(20): 26586-26595.

【37】Lou K, Qian S X, Ren Z C,et al. Femtosecond laser processing by using patterned vector optical fields[J]. Scientific Reports, 2013, 3: 2281.

【38】Cai M Q, Tu C H, Zhang H H,et al. Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields[J]. Optics Express, 2013, 21(25): 31469-31482.

【39】Pan Y, Gao X Z, Cai M Q, et al. Fractal vector optical fields[J]. Optics Letters, 2016, 41(14): 3161-3164.

【40】Gao X Z, Pan Y, Zhao M D, et al. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model[J]. Optics Express, 2018, 26(2): 1597-1614.

【41】Yu R L, Xin Y, Zhao Q, et al. Array of polarization singularities in interference of three waves[J]. Journal of the Optical Society of America A, 2013, 30(12): 2556-2560.

【42】Pan Y, Li S M, Mao L, et al. Vector optical fields with polarization distributions similar to electric and magnetic field lines[J]. Optics Express, 2013, 21(13): 16200-16209.

【43】Han L, Liu S, Li P, et al. Managing focal fields of vector beams with multiple polarization singularities[J]. Applied Optics, 2016, 55(32): 9049-9053.

【44】Pan Y, Li Y N, Ren Z C, et al. Parabolic-symmetry vector optical fields and their tightly focusing properties[J]. Physical Review A, 2014, 89(3): 035801.

【45】Pan Y, Li Y N, Li S M, et al. Elliptic-symmetry vector optical fields[J]. Optics Express, 2014, 22(16): 19302-19313.

【46】Pan Y, Li Y N, Li S M, et al. Vector optical fields with bipolar symmetry of linear polarization[J]. Optics Letters, 2013, 38(18): 3700-3703.

【47】Gao X Z, Pan Y, Cai M Q, et al. Hyperbolic-symmetry vector fields[J]. Optics Express, 2015, 23(25): 32238-32252.

【48】Chen H, Zheng Z, Zhang B F, et al. Polarization structuring of focused field through polarization-only modulation of incident beam[J]. Optics Letters, 2010, 35(16): 2825-2827.

【49】Chen Z Z, Zeng T T, Ding J P. Reverse engineering approach to focus shaping[J]. Optics Letters, 2016, 41(9): 1929-1932.

【50】Lerman G M, Levy U. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization[J]. Optics Letters, 2007, 32(15): 2194-2196.

【51】Lerman G M, Lilach Y, Levy U. Demonstration of spatially inhomogeneous vector beams with elliptical symmetry[J]. Optics Letters, 2009, 34(11): 1669-1671.

【52】Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 2007, 32(24): 3549-3551.

【53】Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441: 47-189.

【54】Bespalov V I, Talanov V I. Filamentary structure of light beams in nonlinear liquids[J]. ZhETF Pisma Redaktsiiu, 1966, 3(11): 471-476.

【55】Li S M, Li Y N, Wang X L, et al. Taming the collapse of optical fields[J]. Scientific Reports, 2012, 2: 1007

【56】Gao X Z, Pan Y, Zhang G L, et al. Redistributing the energy flow of tightly focused ellipticity-variant vector optical fields[J]. Photonics Research, 2017, 5(6): 640-648.

【57】Xu D F, Gu B, Rui G H, et al. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors[J]. Optics Express, 2016, 24(4): 4177-4186.

【58】Gu B, Wen B, Rui G H, et al. Nonlinear polarization evolution of hybridly polarized vector beams through isotropic Kerr nonlinearities[J]. Optics Express, 2016, 24(22): 25867-25875.

【59】Chen R P, Chew K H, Dai C Q, et al. Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization[J]. Physical Review A, 2017, 96(5): 053862.

【60】Chen R P, Zhong L X, Chew K H, et al. Effect of a spiral phase on a vector optical field with hybrid polarization states[J]. Journal of Optics, 2015, 17(6): 065605.

【61】Chen R P, Chew K H, Zhou G Q, et al. Vectorial effect of hybrid polarization states on the collapse dynamics of a structured optical field[J]. Optics Express, 2016, 24(24): 28143-28153.

【62】Hu H W, Xiao P P. The tight focusing properties of spatial hybrid polarization vector beam[J]. Optik - International Journal for Light and Electron Optics, 2013, 124(16): 2406-2410.

【63】Gu B, Pan Y, Rui G H, et al. Polarization evolution characteristics of focused hybridly polarized vector fields[J]. Applied Physics B, 2014, 117(3): 915-926.

【64】Li S M, Ren Z C, Kong L J,et al. Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization[J]. Photonics Research, 2016, 4(5): B29-B34.

【65】Si Y, Kong L J, Zhang Y, et al. Spatial-variant geometric phase of hybrid-polarized vector optical fields[J]. Chinese Physics Letters, 2017, 34(4): 044204.

【66】Chen R P, Gao T Y, Chew K H, et al. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization[J]. Chinese Physics B, 2017, 26(10): 104202.

【67】Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

【68】Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

【69】Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.

【70】Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 2010, 105(25): 253602.

【71】Yan S H, Yao B L, Lei M. Comment on “optical orbital angular momentum from the curl of polarization”[J]. Physical Review Letters, 2011, 106(18): 189301.

【72】Wang X L, Chen J, Li Y N, et al. A reply to the comment on “optical orbital angular momentum from the curl of polarization”[J]. Physical Review Letters, 2011, 106(18): 189302.

【73】Hu K L, Chen Z Y, Pu J X. Tight focusing properties of hybridly polarized vector beams[J]. Journal of the Optical Society of America A, 2012, 29(6): 1099-1104.

【74】Li J, Wu P H, Chang L P. Analysis of the far-field characteristics of hybridly polarized vector beams from the vectorial structure[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 169: 127-134.

【75】Ling X H, Yi X N, Dai Z P, et al. Characterization and manipulation of full Poincaré beams on the hybrid Poincaré sphere[J]. Journal of the Optical Society of America B, 2016, 33(11): 2172-2176.

【76】Wei C, Wu D, Liang C H, et al. Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincaré beam[J]. Optics Express, 2015, 23(19): 24331-24341.

【77】Zhang L, Qiu X D, Li F S, et al. Second harmonic generation with full Poincaré beams[J]. Optics Express, 2018, 26(9): 11678-11684.

【78】Pan Y, Ren Z C, Qian S X,et al. Uniformly elliptically-polarized vector optical fields[J]. Journal of Optics, 2015, 17(3): 035616.

【79】Milione G, Evans S, Nolan D A, et al. Higher order Pancharatnam-Berry phase and the angular momentum of light[J]. Physical Review Letters, 2012, 108(19): 190401.

【80】Liu Y C, Ling X H, Yi X N, et al. Realization of polarization evolution on higher-order Poincaré sphere with metasurface[J]. Applied Physics Letters, 2014, 104(19): 191110.

【81】Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10(5): 327-332.

【82】Liu Z X, Liu Y Y, Ke Y G, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 2017, 5(1): 15-21.

【83】Liu Y Y, Liu Z X, Zhou J X, et al. Measurements of Pancharatnam-Berry phase in mode transfor-mations on hybrid-order Poincaré sphere[J]. Optics Letters, 2017, 42(17): 3447-3450.

【84】Pan Y, Gao X Z, Ren Z C, et al. Arbitrarily tunable orbital angular momentum of photons[J]. Scientific Reports, 2016, 6: 29212.

【85】Man Z S, Bai Z D, Li J J, et al. Focus shaping by tailoring arbitrary hybrid polarization states that have a combination of orthogonal linear polarization bases[J]. Applied Optics, 2018, 57(12): 3047-3055.

【86】Mu T K, Chen Z Y, Pacheco S, et al. Generation of a controllable multifocal array from a modulated azimuthally polarized beam[J]. Optics Letters, 2016, 41(2): 261-264.

【87】Zhu L W, Sun M Y, Zhang D W, et al. Multifocal array with controllable polarization in each focal spot[J]. Optics Express, 2015, 23(19): 24688-24698.

【88】Zeng T T, Chang C L, Chen Z Z, et al. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding[J]. Journal of Optics, 2018, 20(6): 065605.

【89】Cai M Q, Li P P, Feng D, et al. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields[J]. Optics Letters, 2016, 41(7): 1474-1477.

【90】Berry M. Making waves in physics[J]. Nature, 2000, 403(6765): 21.

【91】Soskin M S, Vasnetsov M V. Singular optics[J]. Progress in Optics, 2001, 42(4): 219-276.

【92】Freund I. Polarization singularity indices in Gaussian laser beams[J]. Optics Communications, 2002, 201: 251-270.

【93】Flossmann F, Schwarz U T, Maier M,et al. Polarization singularities from unfolding an optical vortex through a birefringent crystal[J]. Physical Review Letters, 2005, 95(25): 253901.

【94】Bliokh K Y, Niv A, Kleiner V, et al. Singular polarimetry: evolution of polarization singularities in electromagnetic waves propagating in a weakly anisotropic medium[J]. Optics Express, 2008, 16(2): 695-709.

【95】Pal S K, Senthilkumaran P. Lattice of C points at intensity nulls[J]. Optics Letters, 2018, 43(6): 1259-1262.

【96】Ruchi, Pal S K, Senthilkumaran P. Generation of V-point polarization singularity lattices[J]. Optics Express, 2017, 25(16): 19326-19331.

【97】Pal S K, Senthilkumaran P. Cultivation of lemon fields[J]. Optics Express, 2016, 24(24): 28008-28013.

【98】Pal S K, Senthilkumaran P. C-point and V-point singularity lattice formation and index sign conversion methods[J]. Optics Communications, 2017, 393: 156-168.

【99】Schoonover R W, Visser T D. Creating polarization singularities with an N-pinhole interferometer[J]. Physical Review A, 2009, 79(4): 043809.

【100】Zhang W, Liu S, Li P, et al. Controlling the polarization singularities of the focused azimuthally polarized beams[J]. Optics Express, 2013, 21(1): 974-983.

【101】Freund I, Soskin M S, Mokhun A I. Elliptic critical points in paraxial optical fields[J]. Optics Communications, 2002, 208: 223-253.

【102】Kiselev A D. Singularities in polarization resolved angular patterns: Transmittance of nematic liquid crystal cells[J]. Journal of Physics: Condensed Matter, 2007, 19(24): 246102.

【103】Felde C V, Chernyshov A A, Bogatyryova G V, et al. Polarization singularities in partially coherent combined beams[J]. JETP Letters, 2008, 88(7): 418-422.

【104】Vyas S, Kozawa Y, Sato S. Polarization singularities in superposition of vector beams[J]. Optics Express, 2013, 21(7): 8972-8986.

【105】Chang C L, Gao Y, Xia J P, et al. Shaping of optical vector beams in three dimensions[J]. Optics Letters, 2017, 42(19): 3884-3887.

【106】Chen H, Hao J J, Zhang B F, et al. Generation of vector beam with space-variant distribution of both polarization and phase[J]. Optics Letters, 2011, 36(16): 3179-3181.

【107】Zhang G L, Gao X Z, Pan Y, et al. Inverse method to engineer uniform-intensity focal fields with arbitrary shape[J]. Optics Express, 2018, 26(13): 16782-16796.

【108】Han W, Yang Y F, Cheng W, et al. Vectorial optical field generator for the creation of arbitrarily complex fields[J]. Optics Express, 2013, 21(18): 20692-20706.

【109】Yu Z L, Chen H, Chen Z Z, et al. Simultaneous tailoring of complete polarization, amplitude and phase of vector beams[J]. Optics Communications, 2015, 345: 135-140.

【110】Chen Z Z, Zeng T T, Qian B J, et al. Complete shaping of optical vector beams[J]. Optics Express, 2015, 23(14): 17701-17710.

【111】Rong Z Y, Han Y J, Wang S Z, et al. Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators[J]. Optics Express, 2014, 22(2): 1636-1644.

引用该论文

Pan Yue,Ding Jianping,Wang Huitian. Manipulation on Novel Vector Optical Fields: Introduction, Advances and Applications (Invited Review)[J]. Acta Optica Sinica, 2019, 39(1): 0126001

潘岳,丁剑平,王慧田. 新型矢量光场调控:简介、进展与应用(特邀综述)[J]. 光学学报, 2019, 39(1): 0126001

被引情况

【1】王腾,陆佳峰,黄译平,孟令浩,石帆,曾祥龙. 全光纤超快矢量光场的产生与研究进展. 中国激光, 2019, 46(5): 508010--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF