首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126015--1)

同心矢量完美涡旋模式的特性

Characteristics of Concentric Vectorial Perfect Vortex Mode

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

完美涡旋光场模式的单一性难以满足其在多种领域的应用需求。为解决该问题, 提出了一种同心矢量完美涡旋模式, 其光强分布为一族同心的矢量完美涡旋, 各环矢量完美涡旋的性质得到了验证。研究发现, 每个完美涡旋的光环大小、偏振阶数等特征参数相互独立。对同心矢量完美涡旋模式光环叠加的实验表明, 与标量完美涡旋光束叠加不同, 矢量叠加产生的子涡旋会在特定位置消失, 原因是两光环在该位置偏振正交。该研究极大地丰富了完美涡旋的模式分布, 拓宽了完美涡旋在微操纵、光通信等领域的潜在应用。

Abstract

A perfect vortex beam has only a single simple mode, which restricts its applications in many fields. To overcome this drawback, a concentric vectorial perfect vortex mode is proposed, whose intensity distribution presents a group of concentric vectorial perfect vortices. In addition, the property of each vectorial perfect vortex is tested. The research results show that the characteristic parameters of each vectorial perfect vortex, such as radius and polarization order, are independent on each other. Furthermore, the superposition property of intensity rings of concentric vectorial perfect vortex mode is studied. Different from the scalar superposition, the sub-vortices generated by the vectorial superposition vanish at some specific locations as a result of polarization orthogonality for these rings at these locations. This work vastly enriches the mode distributions of a perfect vortex and broadens its potential applications in the fields of micromanipulation, optical communication and so on.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436;O438.1

DOI:10.3788/aos201939.0126015

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家自然科学基金(61775052, 11704098)

收稿日期:2018-08-29

修改稿日期:2018-10-28

网络出版日期:2018-11-08

作者单位    点击查看

胡俊涛:河南科技大学物理工程学院, 河南 洛阳 471023
马海祥:河南科技大学物理工程学院, 河南 洛阳 471023
李新忠:河南科技大学物理工程学院, 河南 洛阳 471023河南省光电储能材料与应用重点实验室, 河南 洛阳 471023
唐苗苗:河南科技大学物理工程学院, 河南 洛阳 471023河南省光电储能材料与应用重点实验室, 河南 洛阳 471023
李贺贺:河南科技大学物理工程学院, 河南 洛阳 471023河南省光电储能材料与应用重点实验室, 河南 洛阳 471023
台玉萍:河南科技大学化工与制药学院, 河南 洛阳 471023
王静鸽:河南科技大学物理工程学院, 河南 洛阳 471023河南省光电储能材料与应用重点实验室, 河南 洛阳 471023

联系人作者:李新忠(xzli@haust.edu.cn)

【1】Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

【2】Li X Z, Meng Y, Li H H, et al. Generation of perfect vortex beams and space free-control technology[J]. Acta Optica Sinica, 2016, 36(10): 1026018.
李新忠, 孟莹, 李贺贺, 等. 完美涡旋光束的产生及其空间自由调控技术[J]. 光学学报, 2016, 36(10): 1026018.

【3】Ma H X, Li X Z, Li H H, et al. Spatial mode distributions of Ince-Gaussian beams modulated by phase difference factor[J]. Acta Optica Sinica, 2017, 37(6): 0626002.
马海祥, 李新忠, 李贺贺, 等. 相位差因子调控的Ince-Gaussian光束空间模式分布[J]. 光学学报, 2017, 37(6): 0626002.

【4】Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424: 810-816.

【5】Tao S H, Yuan X C, Lin J W, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726-7731.

【6】Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 2015, 4: e257.

【7】Yu W T, Ji Z H, Dong D S, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 2016, 10(1): 147-152.

【8】Aleksanyan A, Kravets N, Brasselet E. Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve[J]. Physical Review Letters, 2017, 118(20): 203902.

【9】Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light′s orbital angular momentum[J]. Science, 2013, 341(6145): 537-540.

【10】Ostrovsky A S,Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536.

【11】Wang Y J, Li X Z, Li H H, et al. Research progress of perfect vortex field[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090007.
王亚军, 李新忠, 李贺贺, 等. 完美涡旋光场的研究进展[J]. 激光与光电子学进展, 2017, 54(9): 090007.

【12】Chen M Z, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Optics Letters, 2013, 38(22): 4919-4922.

【13】Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127.

【14】Zhang C L, Min C J, Du L P, et al. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging[J]. Applied Physics Letters, 2016, 108(20): 201601.

【15】Li P, Zhang Y, Liu S, et al. Generation of perfect vectorial vortex beams[J]. Optics Letters, 2016, 41(10): 2205-2208.

【16】Kovalev A A, Kotlyar V V, Porfirev A P. A highly efficient element for generating elliptic perfect optical vortices[J]. Applied Physics Letters, 2017, 110(26): 261102.

【17】Xin Z Q, Zhang C L, Yuan X C. Concentric perfect optical vortex beam generated by a digital micromirrors device[J]. IEEE Photonics Journal, 2017, 9(2): 7903107.

【18】Ma H X, Li X Z, Tai Y P, et al. Generation of circular optical vortex array[J]. Annalen Der Physik, 2017, 529(12): 1700285.

【19】Ma H X, Li X Z, Zhang H, et al. Adjustable elliptic annular optical vortex array[J]. IEEE Photonics Technology Letters, 2018, 30(9): 813-816.

【20】Li X Z, Ma H X, Yin C L, et al. Controllable mode transformation in perfect optical vortices[J]. Optics Express, 2018, 26(2): 651-662.

【21】Milione G, Sztul H I, Nolan D A, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 2011, 107(5): 053601.

【22】Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Optics Letters, 2015, 40(4): 597-600.

【23】Kotlyar V V, Kovalev A A, Porfirev A P. Optimal phase element for generating a perfect optical vortex[J]. Journal of the Optical Society of America A, 2016, 33(12): 2376-2384.

【24】Liu S, Li P, Peng T, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Optics Express, 2012, 20(19): 21715-21721.

引用该论文

Hu Juntao,Ma Haixiang,Li Xinzhong,Tang Miaomiao,Li Hehe,Tai Yuping,Wang Jingge. Characteristics of Concentric Vectorial Perfect Vortex Mode[J]. Acta Optica Sinica, 2019, 39(1): 0126015

胡俊涛,马海祥,李新忠,唐苗苗,李贺贺,台玉萍,王静鸽. 同心矢量完美涡旋模式的特性[J]. 光学学报, 2019, 39(1): 0126015

被引情况

【1】张灿,余世星,龙飞,杨晓昆,张正平. Ku波段双E结构超薄高效反射型线性极化转换表面. 激光与光电子学进展, 2019, 56(9): 92401--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF