首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126012--1)

基于整形飞秒激光脉冲的三维微纳制备(特邀综述)

Three-Dimensional Microfabrication by Shaped Femtosecond Laser Pulses (Invited Review)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒激光脉冲加工具有热效应小、加工精度突破衍射极限、三维内部加工能力等特性, 在微纳制备领域独具优势。综述了利用飞秒激光脉冲整形技术结合飞秒激光三维直写进行透明介质中微纳制备的最新进展, 这些技术有望在新型集成光学和微纳光学中发挥重要的作用。

Abstract

Femtosecond laser micromachining has been widely used in laser material processing because of its unique advantages of low thermal effects, high precision and three-dimensional processing capability inside materials. The recent advances of the application of femtosecond laser microfabrication combined with femtosecond laser pulse shaping to micro-nanofabrication in transparent materials are reviewed. These techniques possess an important application prospect in novel integrated optics and micro- and nano-optics.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/aos201939.0126012

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家自然科学基金(61327902, 61590934,11734009,11674340,11604351)、中科院先导(XDB 16000000)

收稿日期:2018-08-30

修改稿日期:2018-10-08

网络出版日期:2018-10-16

作者单位    点击查看

乔玲玲:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
储蔚:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800华东师范大学物理与材料科学学院极端光机电实验室, 上海 200241
王哲:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800上海科技大学物质科学与技术学院, 上海 200031
程亚:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800华东师范大学物理与材料科学学院极端光机电实验室, 上海 200241

联系人作者:储蔚(chuwei0818@qq.com); 程亚(ya.cheng@siom.ac.cn);

【1】Sugioka K, Cheng Y, Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3: e149.

【2】Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

【3】Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

【4】Momma C, Chichkov B N, Nolte S, et al. Short-pulse laser ablation of solid targets[J]. Optics Communications, 1996, 129(1/2): 134-142.

【5】Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

【6】Joglekar A P, Liu H H, Meyhfer E, et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 5856-5861.

【7】Sugioka K, Cheng Y. Fundamentals of femtosecond laser processing[M]∥Femtosecond laser 3D micromachining for microfluidic and optofluidic applications. London: Springer 2014: 19-33.

【8】Nolte S, Will M, Burghoff J, et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics[J]. Applied Physics A, 2003, 77(1): 109-111.

【9】Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023-2025.

【10】Watanabe W, Sowa S, Tamaki T, et al. Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser[J]. Japanese Journal of Applied Physics, 2006, 45(29): L765-L767.

【11】Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro-and nanofabrication[J]. Applied Physics Reviews, 2014, 1(4): 041303.

【12】Liao Y, Song J X, Li E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 2012, 12(4): 746-749.

【13】Gan Z, Cao Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

【14】Shverdin M Y, Goda S N, Yin G Y, et al. Coherent control of laser-induced breakdown[J]. Optics Letters, 2006, 31(9): 1331-1333.

【15】Dachraoui H, Husinsky W. Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form[J]. Physical Review Letters, 2006, 97(10): 107601.

【16】Sahl S J, Hell S W, Jakobs S. Fluorescence nanoscopy in cell biology[J]. Nature Reviews Molecular Cell Biology, 2017, 18(11): 685.

【17】Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731.

【18】Cheng Y, Sugioka K, Midorikawa K, et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 2003, 28(1): 55-57.

【19】Beresna M, Gecevicˇius M, Kazansky P G. Ultrafast laser direct writing and nanostructuring in transparent materials[J]. Advances in Optics and Photonics, 2014, 6(3): 293-339.

【20】Sowa S, Watanabe W, Tamaki T, et al. Symmetric waveguides in poly (methyl methacrylate) fabricated by femtosecond laser pulses[J]. Optics Express, 2006, 14(1): 291-297.

【21】Ams M, Marshall G D, Spence D J, et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses[J]. Optical Express, 2005, 13(15), 5676-5681.

【22】Marshall G D, Politi A, Matthews J C F, et al. Laser written waveguide photonic quantum circuits[J]. Optics Express, 2009, 17(15): 12546-12554.

【23】Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser structured LiNbO3[J]. Applied Physics A, 2007, 89(1): 127-132.

【24】Okhrimchuk A G, Shestakov A V, Khrushchev I, et al. Depressed cladding, buried waveguide laser formed in a YAG∶Nd3+ crystal by femtosecond laser writing[J]. Optics Letters, 2005, 30(17): 2248-2250.

【25】Lancaster D G, Gross S, Ebendorff-Heidepriem H, et al. Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser[J]. Optics Letters, 2011, 36(9): 1587-1589.

【26】Long X W, Bai J, Zhao W, et al. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams[J]. Optics Letters, 2012, 37(15): 3138-3140.

【27】Beckmann D, Schnitzler D, Schaefer D, et al. Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation[J]. Optics Express, 2011, 19(25): 25418-25425.

【28】Caulier O, Le Coq D, Bychkov E, et al. Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation[J]. Optics Letters, 2013, 38(20): 4212-4215.

【29】Liao Y, Qi J, Wang P, et al. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam[J]. Scientific Reports, 2016, 6: 28790.

【30】Qi J, Wang P, Liao Y, et al. Fabrication of polarization-independent singlemode waveguides in lithium niobate crystal with femtosecond laser pulses[J]. Optical Materials Express, 2016, 6(8): 2554-2559.

【31】Wang P, Qi J, Liu Z M, et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing[J]. Scientific Reports, 2017, 7: 41211.

【32】Zhu G, Van Howe J, Durst M, et al. Simultaneous spatial and temporal focusing of femtosecond pulses[J]. Optics Express, 2005, 13(6): 2153-2159.

【33】Oron D, Tal E, Silberberg Y. Scanningless depth-resolved microscopy[J]. Optics Express, 2005, 13(5): 1468-1476.

【34】He F, Xu H, Cheng Y, et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Optics Letters, 2010, 35(7): 1106-1108.

【35】He F, Cheng Y, Lin J T, et al. Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining[J]. New Journal of Physics 2011, 13(8): 083014.

【36】Tan Y X, Wang Z H, Chu W, et al. High-throughput in-volume processing in glass with isotropic spatial resolutions in three dimensions[J]. Optical Materials Express, 2016, 6 (12): 3787-3793.

【37】Vitek D N, Block E, Bellouard Y, et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials[J]. Optics Express, 2010, 18(24): 24673-24678.

【38】Vitek D N, Adams D E, Johnson A, et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials[J]. Optics Express, 2010, 18(17): 18086-18094.

【39】Kim D, So P T C. High-throughput three-dimensional lithographic microfabrication[J]. Optics Letters, 2010, 35(10): 1602-1604.

【40】Chu W, Tan Y X, Wang P, et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization[J]. Advanced Materials Technologies, 2018, 3(5): 1700396.

【41】Zeng B, Chu W, Gao H, et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 2011, 84(6): 063819.

【42】Li G H, Ni J L, Xie H Q, et al. Second harmonic generation in centrosymmetric gas with spatiotemporally focused intense femtosecond laser pulses[J]. Optics Letters, 2014, 39(4): 961-964.

【43】Block E, Greco M, Vitek D, et al. Simultaneous spatial and temporal focusing for tissue ablation[J]. Biomedical Optics Express, 2013, 4(6): 831-841.

【44】Kammel R, Ackermann R, Thomas J, et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing[J]. Light: Science & Applications, 2014, 3: e169.

【45】Cumming B P, Jesacher A, Booth M J, et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate[J]. Optics Express, 2011, 19(10): 9419-9425.

【46】Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction[J]. Optics Express, 2010, 18(20): 21090-21099.

【47】Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/3/4): 47-189.

【48】Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435-448.

【49】Malinauskas M, Farsari M, Piskarskas A, et al. Ultrafast laser nanostructuring of photopolymers: a decade of advances[J]. Physics Reports, 2013, 533(1): 1-31.

【50】Wang P, Chu W, Li W B, et al. Aberration-insensitive three-dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses[J]. Optics Letters, 2018, 43(15): 3485-3488.

【51】Durnin J, Miceli Jr J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499.

【52】Duocastella M, Arnold C B. Bessel and annular beams for materials processing[J]. Laser & Photonics Reviews, 2012, 6(5): 607-621.

【53】Bhuyan M K, Courvoisier F, Lacourt P A, et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams[J]. Applied Physics Letters, 2010, 97(8): 081102.

【54】He F, Yu J J, Tan Y X, et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias[J]. Scientific Reports, 2017, 7: 40785.

引用该论文

Qiao Lingling,Chu Wei,Wang Zhe,Cheng Ya. Three-Dimensional Microfabrication by Shaped Femtosecond Laser Pulses (Invited Review)[J]. Acta Optica Sinica, 2019, 39(1): 0126012

乔玲玲,储蔚,王哲,程亚. 基于整形飞秒激光脉冲的三维微纳制备(特邀综述)[J]. 光学学报, 2019, 39(1): 0126012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF