首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126021--1)

整形飞秒激光脉冲在熔融石英中的成丝控制研究

Control of Filament by Shaped Femtosecond Pulses in Fused Silica

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用基于液晶空间光调制器的飞秒激光脉冲整形技术, 对飞秒激光在熔融石英中形成等离子体丝的过程进行优化控制研究。实验结果表明:通过脉冲整形可以在固体介质中的指定位置产生等离子体丝。实现了整形脉冲在熔融石英中成丝起点的长距离可控移动, 最大移动量达到5.4 mm。通过求解(3+1)维非线性薛定谔方程, 对整形脉冲在熔融石英中的成丝过程进行理论模拟研究, 得到了与实验一致的结果。研究结果表明:等离子体丝起始位置是由整形飞秒脉冲的中心峰值强度和包络分布决定的。

Abstract

The pulse shaping technology based on liquid crystal spatial light modulator is used to control the femtosecond laser filament in fused silica. The experimental results show that the filament can be generated at a designated position in fused silica. In addition, a long-distance controllable displacement of the onset of filamentation in fused silica is achieved, with a maximum displacement of 5.4 mm. Furthermore, the theoretical simulation on filamentation of shaped pulse in fused silica is performed based on the (3+1)-D nonlinear Schrdinger equation. The results are consistent with those of experiments. It is demonstrated that the onset of filamentation depends on the peak intensity and envelope of shaped femtosecond pulse.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437.5

DOI:10.3788/aos201939.0126021

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家自然科学基金(11474039,11774038)、吉林省科技厅中青年科技创新领军人才及团队项目(20170519018JH)

收稿日期:2018-09-03

修改稿日期:2018-10-21

网络出版日期:2018-11-08

作者单位    点击查看

常峻巍:长春理工大学理学院, 吉林 长春 130022
许梦宁:中国科学院大学物理科学学院, 北京 101407
王頔:长春理工大学理学院, 吉林 长春 130022
朱瑞晗:长春理工大学理学院, 吉林 长春 130022
奚婷婷:中国科学院大学物理科学学院, 北京 101407
张兰芝:长春理工大学理学院, 吉林 长春 130022
李东伟:长春理工大学理学院, 吉林 长春 130022
郝作强:长春理工大学理学院, 吉林 长春 130022

联系人作者:朱瑞晗(zhuruihan@126.com); 奚婷婷(ttxi@ucas.ac.cn); 郝作强(zqhao@cust.edu.cn);

【1】Chin S L, Hosseini S A, Liu W, et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges[J]. Canadian Journal of Physics, 2005, 83(9): 863-905.

【2】Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/3/4): 47-189.

【3】Béjot P, Kasparian J, Henin S, et al. Higher-order Kerr terms allow ionization-free filamentation in gases[J]. Physical Review Letters, 2010, 104(10): 103903.

【4】Li C, Shi X, Si J, et al. Photoinduced multiple microchannels inside silicon produced by a femtosecond laser[J]. Applied Physics B, 2010, 98(2/3): 377-381.

【5】Herbstman J F, Hunt A J. High-aspect ratio nanochannel formation by single femtosecond laser pulses[J]. Optics Express, 2010, 18(16): 16840-16848.

【6】Saliminia A, Vallée R, Chin S L. Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm[J]. Optics Communications, 2005, 256(4/5/6): 422-427.

【7】Blonskyi I, Kadan V, Shpotyuk O, et al. Filament-induced self-written waveguides in glassy As4Ge30S66[J]. Applied Physics B, 2011, 104(4): 951-956.

【8】Zhang S G, You W C, Ma X R, et al. Spectral broadening in femtosecond pulse written filamentary waveguides in periodically poled lithium niobate[J]. Optics Express, 2014, 22(13): 16222-16231.

【9】Yamada K, Watanabe W, Li Y D, et al. Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses[J]. Optics Letters, 2004, 29(16): 1846-1848.

【10】Lee S, Nikumb S. Characteristics of filament induced Dammann gratings fabricated using femtosecond laser[J]. Optics & Laser Technology, 2007, 39(7): 1328-1333.

【11】Ran L L, Qu S L. Self-assembled volume vortex grating induced by femtosecond laser pulses in glass[J]. Current Applied Physics, 2009, 9(6): 1210-1212.

【12】Watanabe W, Mochizuki H. Femtosecond laser direct writing of diffractive optical elements in polymers[J]. Proceedings of SPIE, 2010, 7585: 75850B.

【13】Ertorer E, Haque M, Li J Z, et al. Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating[J]. Optics Express, 2018, 26(7): 9323-9331.

【14】Xi T T, Zhao Z J, Hao Z Q. Filamentation of femtosecond laser pulses with spatial chirp in air[J]. Journal of the Optical Society of America B, 2014, 31(2): 321-324.

【15】Milián C, Jarnac A, Brelet Y, et al. Effect of input pulse chirp on nonlinear energy deposition and plasma excitation in water[J]. Journal of the Optical Society of America B, 2014, 31(11): 2829-2837.

【16】Liang H, Sun H Y, Liu Y H, et al. Chirp control of femtosecond laser-filamentation-induced snow formation in a cloud chamber[J]. Chinese Optics Letters, 2015, 13(3): 033201.

【17】Wu Z X, Jiang H B, Sun Q, et al. Filamentation and temporal reshaping of a femtosecond pulse in fused silica[J]. Physical Review A, 2003, 68(6): 063820.

【18】Blonskyi I, Kadan V, Shynkarenko Y, et al. Periodic femtosecond filamentation in birefringent media[J]. Applied Physics B, 2015, 120(4): 705-710.

【19】Shi Y, Chen A M, Jiang Y F, et al. Influence of laser polarization on plasma fluorescence emission during the femtosecond filamentation in air[J]. Optics Communications, 2016, 367: 174-180.

【20】Sun Q, Asahi H, Nishijima Y, et al. Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica[J]. Optics Express, 2010, 18(24): 24495-24503.

【21】Fu Y X, Xiong H, Xu H, et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 2009, 34(23): 3752-3754.

【22】Liu L, Wang C, Cheng Y, et al. Fine control of multiple femtosecond filamentation using a combination of phase plates[J]. Journal of Physics B, 2011, 44(21): 215404.

【23】Gao H, Chu W, Yu G L, et al. Femtosecond laser filament array generated with step phase plate in air[J]. Optics Express, 2013, 21(4): 4612-4622.

【24】Clerici M, Hu Y, Lassonde P, et al. Laser-assisted guiding of electric discharges around objects[J]. Science Advances, 2015, 1(5): e1400111.

【25】Hao Z Q, Stelmaszczyk K, Rohwetter P, et al. Femtosecond laser filament-fringes in fused silica[J]. Optics Express, 2011, 19(8): 7799-7806.

【26】Ionin A A, Iroshnikov N G, Kosareva O G, et al. Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror[J]. Journal of the Optical Society of America B, 2013, 30(8): 2257-2262.

【27】Englesbe A C, He Z H, Nees J A, et al. Control of the configuration of multiple femtosecond filaments in air by adaptive wavefront manipulation[J]. Optics Express, 2016, 24(6): 6071-6082.

【28】Théberge F, Liu W W, Simard P T, et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing[J]. Physical Review E, 2006, 74(3): 036406.

【29】Hao Z Q, Salamé R, Lascoux N, et al. Multiple filamentation of non-uniformly focused ultrashort laser pulses[J]. Applied Physics B, 2009, 94(2): 243-247.

【30】Lu P F, Wu J, Zeng H P. Manipulation of plasma grating by impulsive molecular alignment[J]. Applied Physics Letters, 2013, 103(22): 221113.

【31】Camino A, Hao Z Q, Liu X, et al. Control of laser filamentation in fused silica by a periodic microlens array[J]. Optics Express, 2013, 21(7): 7908-7915.

【32】Vizcaíno J P, Mendoza-Yero O, Borrego-Varillas R, et al. On-axis non-linear effects with programmable Dammann lenses under femtosecond illumination[J]. Optics Letters, 2013, 38(10): 1621-1623.

【33】Borrego-Varillas R, Perez-Vizcaino J, Mendoza-Yero O, et al. Controlled multibeam supercontinuum generation with a spatial light modulator[J]. Proceedings of the IEEE, 2014, 26(16): 1661-1664.

【34】Li P P, Cai M Q, Lü J Q, et al. Control of femtosecond multi-filamentation in glass by designable patterned optical fields[J]. AIP Advances, 2016, 6(12): 125103.

【35】Mendoza-Yero O, Carbonell-Leal M, Doate-Buendía C, et al. Diffractive control of 3D multifilamentation in fused silica with micrometric resolution[J]. Optics Express, 2016, 24(14): 15307-15318.

【36】Weiner A M. Ultrafast optical pulse shaping: a tutorial review[J]. Optics Communications, 2011, 284(15): 3669-3692.

【37】Heck G, Sloss J, Levis R J. Adaptive control of the spatial position of white light filaments in an aqueous solution[J]. Optics Communications, 2006, 259(1): 216-222.

【38】Ackermann R, Salmon E, Lascoux N, et al. Optimal control of filamentation in air[J]. Applied Physics Letters, 2006, 89(17): 171117.

【39】Chen A M, Li S Y, Qi H X, et al. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse[J]. Optics Communications, 2017, 383: 144-147.

【40】Liu W, Chin S L. Direct measurement of the critical power of femtosecond Ti∶sapphire laser pulse in air[J]. Optics Express, 2005, 13(15): 5750-5755.

【41】Tzortzakis S, Sudrie L, Franco M, et al. Self-guided propagation of ultrashort IR laser pulses in fused silica[J]. Physical Review Letters, 2001, 87(21): 213902.

【42】Rolle J, Bergé L, Duchateau G, et al. Filamentation of ultrashort laser pulses in silica glass and KDP crystals: a comparative study[J]. Physical Review A, 2014, 90(2): 023834.

引用该论文

Chang Junwei,Xu Mengning,Wang Di,Zhu Ruihan,Xi Tingting,Zhang Lanzhi,Li Dongwei,Hao Zuoqiang. Control of Filament by Shaped Femtosecond Pulses in Fused Silica[J]. Acta Optica Sinica, 2019, 39(1): 0126021

常峻巍,许梦宁,王頔,朱瑞晗,奚婷婷,张兰芝,李东伟,郝作强. 整形飞秒激光脉冲在熔融石英中的成丝控制研究[J]. 光学学报, 2019, 39(1): 0126021

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF