首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126008--1)

面向光纤通信多维复用的光场调控与传输技术(特邀综述)

Manipulation and Transmission Technologies of Optical Field for Multidimensional Multiplexing Optical Fiber Communication (Invited Review)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

复杂光场通常是指相位、振幅和偏振等具有特殊分布的结构光场, 包括以轨道角动量模式为代表的涡旋光场和以偏振态非均匀分布的矢量光场。利用复杂光场构建多维复用光纤通信系统已成为空分复用光通信技术的研究热点。介绍了通过光纤实现复杂光场产生、调控、传输的方法; 简述了新型环形纤芯光纤在低复杂度、短距模式复用光纤通信系统中的应用; 介绍了基于Q玻片的短距直接检测矢量模式复用光纤通信系统实验; 简要分析了光纤光栅耦合模式转换法, 以及利用少模光纤实现一阶和二阶轨道角动量模式的产生方案; 同时介绍了利用一维和二维周期渐变相位光栅测量涡旋光场特性的技术方案。光纤损耗和模式串扰是限制基于复杂光场的模式复用光纤通信系统性能的关键因素; 基于光纤产生和调控高阶复杂光场仍然具有很大的挑战性。复杂光场模式复用技术作为一种基于光纤本征模式的复用技术, 与其相关的研究在未来超大容量模式复用光纤通信系统中具有重要的研究意义和潜在的应用价值。

Abstract

Complex optical fields usually refer to structured light fields with special distributions of phase, amplitude, polarization and so on, including vortex light fields represented by orbital angular momentum patterns and vector light fields with non-uniformly distributed polarization states. The construction of a multi-dimensional multiplexing optical fiber communication system using complex optical fields has become a research hotspot of the space division multiplexing optical communication technology. The methods of generation, regulation and transmittance of a complex light field through an optical fiber are introduced. In addition, the application of a new ring core fiber in the low complexity short-distance mode multiplexed optical fiber communication system is introduced. The experiment on the Q-plate-based short-distance direct detection vector mode multiplexed optical fiber communication system is introduced. The fiber grating coupled mode conversion method as well as the generation of the first-order and second-order orbital angular momentum modes using a few-mode fiber is briefly analyzed. At the same time, the technical scheme for measuring the characteristics of a vortex light field by one-dimensional and two-dimensional periodic gradient phase gratings is introduced. The fiber loss and mode crosstalk are the key factors limiting the performances of a mode-multiplexed fiber communication system based on complex optical fields. Thus, it is still a great challenge to generate and control a high-order complex optical field based on an optical fiber. However, complex light field mode multiplexing technology as a multiplexing technology based on optical fiber eigenmodes, its related researches have important research significance and potential application value in the future super-capacity mode multiplexed optical fiber communication system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN913.7

DOI:10.3788/aos201939.0126008

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家自然科学基金(61525502, 61435006, 61490715, 61775085, 61705088)、“珠江人才计划”本土创新科研团队项目(2017BT01X121)、广东省特支计划青年拔尖人才项目(2015TQ01X606)、广州市珠江科技新星人才项目(201710010051)

收稿日期:2018-09-03

修改稿日期:2018-10-10

网络出版日期:2018-10-25

作者单位    点击查看

李建平:暨南大学光子技术研究院, 广东 广州 510632
刘洁:中山大学电子与信息工程学院光电材料与技术国家重点实验室, 广东 广州 510006
高社成:暨南大学信息科学技术学院电子工程系, 广东 广州 510632
余思远:中山大学电子与信息工程学院光电材料与技术国家重点实验室, 广东 广州 510006
李朝晖:中山大学电子与信息工程学院光电材料与技术国家重点实验室, 广东 广州 510006

联系人作者:李建平(tjpli421@jnu.edu.cn); 余思远(yusy@mail.sysu.edu.cn); 李朝晖(lzhh88@mail.sysu.edu.cn);

【1】Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362.

【2】Li G F, Bai N, Zhao N B, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487.

【3】Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8(5): 345-348.

【4】Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

【5】Willner A E. Vector-mode multiplexing brings an additional approach for capacity growth in optical fibers[J]. Light: Science & Applications, 2018, 7(3): 18002.

【6】Wang J. Data information transfer using complex optical fields: a review and perspective[J]. Chinese Optics Letters, 2017, 15(3): 030005.

【7】Liu J, Li S M, Zhu L, et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters[J]. Light: Science & Applications, 2017, 7(3): 17148.

【8】Lai J S, Tang R, Wu B B, et al. Analysis on the research progress of space division multiplexing in optical fiber communication[J]. Telecommunications Science, 2017, 33(9): 118-135.
赖俊森, 汤瑞, 吴冰冰, 等. 光纤通信空分复用技术研究进展分析[J]. 电信科学, 2017, 33(9): 118-135.

【9】Pang K, Song H Q, Zhao Z, et al. 400-Gbit/s QPSK free-space optical communication link based on four-fold multiplexing of Hermite-Gaussian or Laguerre-Gaussian modes by varying both modal indices[J]. Optics Letters, 2018, 43(16): 3889-3892.

【10】Ar1k S , Askarov D, Kahn J M. MIMO DSP complexity in mode-division multiplexing[C]. Optical Fiber Communication Conference, Los Angeles, 2015: Th1D.1.

【11】Soma D, Wakayama Y, Igarashi K, et al. Partial MIMO-based 10-mode-multiplexed transmission over 81 km weakly-coupled few-mode fiber[C]. Optical Fiber Communication Conference, 2017: M2D.4.

【12】Milione G, Ip E, Ji P, et al. MIMO-less space division multiplexing with elliptical core optical fibers[C]. Optical Fiber Communication Conference, 2017: Tu2J.1.

【13】Wang L L, Ai J Z, Zhu L, et al. MDM transmission of CAP-16 signals over 1.1-km anti-bending trench-assisted elliptical-core few-mode fiber in passive optical networks[J]. Optics Express, 2017, 25(19): 22991-23002.

【14】Franz B, Bülow H. Mode group division multiplexing in graded-index multimode fibers[J]. Bell Labs Technical Journal, 2013, 18(3): 153-172.

【15】Liu H Y, Wen H, Zacarias J C A Z, et al. 3×10 Gb/s mode group-multiplexed transmission over a 20 km few-mode fiber using photonic lanterns[C]. Optical Fiber Communication Conference, 2017: M2D.5.

【16】Labroille G, Jian P, Garcia L, et al. 30 Gbit/s transmission over 1 km of conventional multi-mode fiber using mode group multiplexing with OOK modulation and direct detection[C]. 2015 European Conference on Optical Communication, Valencia, 2015: 1-3.

【17】Benyahya K, Simonneau C, Ghazisaeidi A, et al. Multiterabit transmission over OM2 multimode fiber with wavelength and mode group multiplexing and direct detection[J]. Journal of Lightwave Technology, 2018, 36(2): 355-360.

【18】Zhang J W, Zhu G X, Liu J, et al. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining[J]. Optics Express, 2018, 26(4): 4243-4257.

【19】Gloge D, Marcatili E A J. Impulse response of fibers with ring-shaped parabolic index distribution[J]. Bell System Technical Journal, 1973, 52(7): 1161-1168.

【20】Nejad R M, Allahverdyan K, Vaity P, et al. Mode division multiplexing using orbital angular momentum modes over 1.4-km ring core fiber[J]. Journal of Lightwave Technology, 2016, 34(18): 4252-4258.

【21】Kang Q Y, Lim E, Jun Y M, et al. Gain equalization of a six-mode-group ring core multimode EDFA[C]. 2014 European Conference on Optical Communication, 2014: 1-3.

【22】Zhu L, Li J X, Zhu G X, et al. First demonstration of orbital angular momentum (OAM) distributed Raman amplifier over 18-km OAM fiber with data-carrying OAM multiplexing and wavelength-division multiplexing[C]. Optical Fiber Communication Conference, 2018: W4C.4.

【23】Keiser G. Optical fiber communications[M]. Pearson Education Limited, 2003.

【24】Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 2014, 22(15): 18044-18055.

【25】Brunet C, Ung B, Wang L X, et al. Design of a family of ring-core fibers for OAM transmission studies[J]. Optics Express, 2015, 23(8): 10553-10563.

【26】Nejad R M, Allahverdyan K, Vaity P, et al. Orbital angular momentum mode division multiplexing over 1.4 km RCF fiber[C]. Conference on Lasers and Electro-Optics, 2016: SW4F.3.

【27】Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2015, 2(3): 267-270.

【28】Gregg P, Kristensen P, Ramachandran S. 13.4 km OAM state propagation by recirculating fiber loop[J]. Optics Express, 2016, 24(17): 18938-18947.

【29】Ingerslev K, Gregg P, Galili M, et al. 12 mode, MIMO-free OAM transmission[C]. Optical Fiber Communication Conference, 2017: M2D.1.

【30】Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

【31】Zhu G X, Hu Z Y, Wu X, et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes[J]. Optics Express, 2018, 26(2): 594-604.

【32】Jung Y, Kang Q Y, Zhou H Y, et al. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission[J]. Journal of Lightwave Technology, 2017, 35(8): 1363-1368.

【33】Jin X Q, Payne F P. Numerical investigation of microbending loss in optical fibres[J]. Journal of Lightwave Technology, 2016, 34(4): 1247-1253.

【34】Padgett M J, Miatto F M, Lavery M P J, et al. Divergence of an orbital-angular-momentum-carrying beam upon propagation[J]. New Journal of Physics, 2015, 17(2): 023011.

【35】Jin X Q, Gomez A, Shi K, et al. Mode coupling effects in ring-core fibers for space-division multiplexing systems[J]. Journal of Lightwave Technology, 2016, 34(14): 3365-3372.

【36】Bozinovic N, Golowich S, Kristensen P, et al. Control of orbital angular momentum of light with optical fibers[J]. Optics Letters, 2012, 37(13): 2451-2453.

【37】Lin Z X, Wang A T, Xu L X, et al. Generation of optical vortices using a helical fiber Bragg grating[J]. Journal of Lightwave Technology, 2014, 32(11): 2152-2156.

【38】Li S H, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics Letters, 2015, 40(18): 4376-4379.

【39】Wei K Y, Zhang W D, Huang L G, et al. Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions[J]. Optics Express, 2017, 25(3): 2733-2741.

【40】Jiang Y C, Ren G B, Lian Y D, et al. Tunable orbital angular momentum generation in optical fibers[J]. Optics Letters, 2016, 41(15): 3535-3538.

【41】Han Y, Liu Y G, Wang Z, et al. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings[J]. Nanophotonics, 2018, 7(1): 287-293.

【42】Zhao Y H, Liu Y Q, Mou C B, et al. Femtosecond laser inscribed axial long-period fiber gratings in two-mode fiber for efficient optical angular momentum generation[C]. Optical Fiber Communications Conference, 2017: W2A.14.

【43】Fu C L, Liu S, Wang Y, et al. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber[J]. Optics Letters, 2018, 43(8): 1786-1789.

【44】Pidishety S, Khudus M I M A, Gregg P, et al. OAM beam generation using all-fiber fused couplers[C]. Conference on Lasers and Electro-Optics, 2016: STu1F.2.

【45】Pidishety S, Pachava S, Gregg P, et al. Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler[J]. Optics Letters, 2017, 42(21): 4347-4350.

【46】Jiang Y C, Ren G B, Shen Y, et al. Two-dimensional tunable orbital angular momentum generation using a vortex fiber[J]. Optics Letters, 2017, 42(23): 5014-5017.

【47】Li Y J, Jin L, Wu H, et al. Superposing multiple LP modes with microphase difference distributed along fiber to generate OAM mode[J]. IEEE Photonics Journal, 2017, 9(2): 1-9.

【48】Wu H, Gao S C, Huang B S, et al. All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber[J]. Optics Letters, 2017, 42(24): 5210-5213.

【49】Rao Y J, Wang Y P, Ran Z L, et al. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses[J]. Journal of Lightwave Technology, 2003, 21(5): 1320-1327.

【50】Xu X G, Zhou E B, Liu N, et al. Advanced modulation formats for 400-Gbps short-reach optical inter-connection[J]. Optics Express, 2015, 23(1): 492-500.

【51】Wang X Y, Yan S Y, Zhu J B, et al. 3.36-Tbit/s OAM and wavelength multiplexed transmission over an inverse-parabolic graded index fiber[C]. Conference on Lasers and Electro-Optics, 2017: SW4I.3.

【52】Feng F, Jung Y, Zhou H, et al. High-order mode-group multiplexed transmission over a 24 km ring-core fibre with OOK modulation and direct detection[C]. 2017 European Conference on Optical Communication, 2017: 1-3.

【53】Feng F, Jin X Q, O′brien D, et al. Mode-group multiplexed transmission using OAM modes over 1 km ring-core fiber without MIMO processing[C]. Optical Fiber Communication Conference, 2017: Th2A.43.

【54】Feng F, Jin X Q, O′brien D, et al. All-optical mode-group multiplexed transmission over a graded-index ring-core fiber with single radial mode[J]. Optics Express, 2017, 25(12): 13773-13781.

【55】Zhu L, Zhu G X, Wang A D, et al. 18 km low-crosstalk OAM+WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation[J]. Optics Letters, 2018, 43(8): 1890-1893.

【56】Zhu L, Wang A D, Wang L L, et al. Experimental demonstration of 8.4-Tbit/s data transmission over an 18-km orbital angular momentum (OAM) fiber using WDM and OAM based mode division multiplexing (MDM)[C]. 2017 European Conference on Optical Communication, Gothenburg, 2017: 1-3.

【57】Sone Y, Nishizawa H, Yamamoto S, et al. Systems and technologies for high-speed inter-office/datacenter interface[J]. Proceedings of SPIE, 2017, 10131: 101310D.

【58】Zhong K P, Zhou X, Huo J H, et al. Digital signal processing for short-reach optical communications: a review of current technologies and future trends[J]. Journal of Lightwave Technology, 2018, 36(2): 377-400.

【59】Eznaveh Z S, Zacarias J C A, Lopez J E A, et al. Annular core photonic lantern OAM mode multiplexer[C]. Optical Fiber Communication Conference, 2017: Tu3J.3.

【60】Shi K, Jung Y, Eznaveh Z S, et al. 10×10 MDM transmission over 24 km of ring-core fibre using mode selective photonic lanterns and sparse equalization[C]. 2017 European Conference on Optical Communication, Gothenburg, 2017: M2E.2.

【61】Wang L X, Nejad R M, Corsi A, et al. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing[J]. Optics Express, 2017, 25(10): 11736-11749.

【62】Rusch L A, Larochelle S. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Frontiers of Optoelectronics, 2018, 11(2): 155-162.

【63】Milione G, Lavery M P J, Huang H, et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Optics Letters, 2015, 40(9): 1980-1983.

【64】Ndagano B, Brüning R, McLaren M, et al. Fiber propagation of vector modes[J]. Optics Express, 2015, 23(13): 17330-17336.

【65】Ndagano B, Sroor H, McLaren M, et al. Beam quality measure for vector beams[J]. Optics Letters, 2016, 41(15): 3407-3410.

【66】Qiao W, Lei T, Wu Z T, et al. Approach to multiplexing fiber communication with cylindrical vector beams[J]. Optics Letters, 2017, 42(13): 2579-2582.

【67】Zhang J B, Li F, Li J P, et al. 120 Gbit/s 2×2 vector-modes-division-multiplexing DD-OFDM-32QAM free-space transmission[J]. IEEE Photonics Journal, 2016, 8(6): 7907008.

【68】Zhang J B, Li F, Li J P, et al. 95.16-Gb/s mode-division-multiplexing signal transmission in free-space enabled by effective-conversion of vector beams[J]. IEEE Photonics Journal, 2017, 9(4): 7202809.

【69】Li J P, Zhang J B, Li F, et al. DD-OFDM transmission over few-mode fiber based on direct vector mode multiplexing[J]. Optics Express, 2018, 26(14): 18749-18757.

【70】Li J P, Li Z H. Vector mode based optical direct detection orthogonal frequency division multiplexing transmission in short-reach optical link[J]. Frontiers of Optoelectronics, 2018.[2018-10-08]. https:∥doi.org/10.1007/s12200-018-0836-7.

【71】White A G, Smith C P, Heckenberg N R, et al. Interferometric measurements of phase singularities in the output of a visible laser[J]. Journal of Modern Optics, 1991, 38(12): 2531-2541.

【72】Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light Science & Applications, 2015, 4(3): e257.

【73】Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings[J]. Optics Letters, 2010, 35(20): 3495-3497.

【74】Zhou H L, Yan S Q, Dong J J, et al. Double metal subwavelength slit arrays interference to measure the orbital angular momentum and the polarization of light[J]. Optics Letters, 2014, 39(11): 3173-3176.

【75】Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601.

【76】Zhou H L, Fu D Z, Dong J J, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect[J]. Light: Science & Applications, 2017, 6(4): e16251.

【77】Li Y J, Deng J, Li J P, et al. Sensitive orbital angular momentum (OAM) monitoring by using gradually changing-period phase grating in OAM-multiplexing optical communication systems[J]. IEEE Photonics Journal, 2016, 8(2): 1-6.

【78】Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings[J]. Scientific Reports, 2017, 7: 40781.

【79】Dai K J, Gao C Q, Zhong L, et al. Measuring OAM states of light beams with gradually-changing-period gratings[J]. Optics Letters, 2015, 40(4): 562-565.

【80】Liu Z B, Gao S C, Xiao W D, et al. Measuring high-order optical orbital angular momentum with a hyperbolic gradually changing period pure-phase grating[J]. Optics Letters, 2018, 43(13): 3076-3079.

引用该论文

Li Jianping,Liu Jie,Gao Shecheng,Yu Siyuan,Li Zhaohui. Manipulation and Transmission Technologies of Optical Field for Multidimensional Multiplexing Optical Fiber Communication (Invited Review)[J]. Acta Optica Sinica, 2019, 39(1): 0126008

李建平,刘洁,高社成,余思远,李朝晖. 面向光纤通信多维复用的光场调控与传输技术(特邀综述)[J]. 光学学报, 2019, 39(1): 0126008

被引情况

【1】王腾,陆佳峰,黄译平,孟令浩,石帆,曾祥龙. 全光纤超快矢量光场的产生与研究进展. 中国激光, 2019, 46(5): 508010--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF