首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126006--1)

亚周期超快光场相干合成技术(特邀综述)

Sub-Optical-Cycle Coherent Waveform Synthesis (Invited Review)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着超快激光脉冲宽度不断变窄, 进一步产生单周期乃至亚周期的脉冲面临着巨大的技术挑战。通过脉冲载波包络相位精密控制技术相干合成多路超快光场, 不仅是目前超快光学的重要前沿内容, 也是实现亚周期脉冲极为有效的方案。结合本课题组近年来在相干合成方面的研究进展, 介绍相干合成超快光场的主要技术内容, 包括超宽带光谱的产生、色散管理及载波包络相位控制等技术。

Abstract

With the rapid developments of ultrafast lasers toward even shorter pulse, it will suffer great technological and experimental challenges for further generation of optical waveforms with single-cycle or sub-cycle in optical wavelength range. The multi-channel coherent synthesis with precise carrier envelope phase (CEP)-controlled waveforms opens the frontier of ultrafast optics for sub-cycle waveforms generation. In this paper, we review the recent progresses on coherent waveform synthesis based on our research works, the mechanics and key technological approaches are analyzed and discussed, which include ultrabroadband supercontinuum generation, dispersion management and CEP-control.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201939.0126006

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家重点研发计划(2017YFC0110301)、国家自然科学基金(61575219, 91850209)、中国科学院青年创新促进会人才支持计划(2018007)、中国科学院物理研究所引进人才科研启动项目(201408)

收稿日期:2018-10-18

修改稿日期:2018-11-20

网络出版日期:2018-11-26

作者单位    点击查看

方少波:中国科学院物理研究所北京凝聚态物理国家研究中心, 北京 100190
魏志义:中国科学院物理研究所北京凝聚态物理国家研究中心, 北京 100190中国科学院大学, 北京 100049

联系人作者:方少波(shaobo.fang@iphy.ac.cn); 魏志义(zywei@iphy.ac.cn);

【1】Rossi G M, Cirmi G, Fang S B, et al. Spectro-temporal characterization of all channels in a sub-optical-cycle parametric waveform synthesizer[C]. Conference on Lasers and Electro-Optics, 2014: SF1E.3.

【2】Manzoni C, Mücke O D, Cirmi G, et al. Coherent pulse synthesis: towards sub-cycle optical waveforms[J]. Laser & Photonics Reviews, 2015, 9(2): 129-171.

【3】Wirth A, Hassan M T, Grguras I, et al. Synthesized light transients[J]. Science, 2011, 334(6053): 195-200.

【4】Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163.

【5】Takahashi E J, Lan P F, Mücke O D, et al. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse[J]. Physical Review Letters, 2010, 104(23): 233901.

【6】Takahashi E J, Lan P, Mücke, Oliver D, et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 2013, 4(10): 2691.

【7】Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nature Photonics, 2011, 5(11): 655-663.

【8】Kolesik M, Brown J M, Moloney J V, et al. History-dependent effects in subcycle-waveform strong-field ionization[J]. Physical Review A, 2014, 90(3): 033414.

【9】Chipperfield L E, Robinson J S, Tisch J W G, et al. Ideal waveform to generate the maximum possible electron recollision energy for any given oscillation period[J]. Physical Review Letters, 2009, 102(6): 063003.

【10】Pérez-Hernández J A, Ciappina M F, Lewenstein M, et al. Beyond carbon K-edge harmonic emission using a spatial and temporal synthesized laser field[J]. Physical Review Letters, 2013, 110(5): 053001.

【11】Jin C, Wang G L, Wei H, et al. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields[J]. Nature Communications, 2014, 5: 4003.

【12】Jin C, Wang G L, Le A T, et al. Route to optimal generation of soft X-ray high harmonics with synthesized two-color laser pulses[J]. Scientific Reports, 2015, 4: 7067.

【13】Haessler S, Baliunas T, Fan G, et al. Optimization of quantum trajectories driven by strong-field waveforms[J]. Physical Review X, 2014, 4(2): 021028.

【14】Balogh E, Bódi B, Tosa V, et al. Genetic optimization of attosecond-pulse generation in light-field synthesizers[J]. Physical Review A, 2014, 90(2): 023855.

【15】Veisz L, Rivas D, Marcus G, et al. Generation and applications of sub-5-fs multi-10-TW light pulses[C]. Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR), 30 June-4 July 2013, Kyoto, Japan, 2013: 1-2.

【16】Edwards M R, Platonenko V T, Mikhailova J M. Enhanced attosecond bursts of relativistic high-order harmonics driven by two-color fields[J]. Optics Letters, 2014, 39(24): 6823-6826.

【17】Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431(7008): 535-538.

【18】Geddes C G R, Toth C, van Tilborg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541.

【19】Faure J, Glinec Y, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544.

【20】Buck A, Nicolai M, Schmid K, et al. Real-time observation of laser-driven electron acceleration[J]. Nature Physics, 2011, 7(7): 543-548.

【21】Leemans W, Gonsalves A, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113(24): 245002.

【22】Chen S, Powers N D, Ghebregziabher I, et al. MeV-energy X rays from inverse compton scattering with laser-wakefield accelerated electrons[J]. Physical Review Letters, 2013, 110(15): 155003.

【23】Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48.

【24】Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81.

【25】Herink G, Solli D R, Gulde M, et al. Field-driven photoemission from nanostructures quenches the quiver motion[J]. Nature, 2012, 483(7388): 190-193.

【26】Piglosiewicz B, Schmidt S, Park D J, et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures[J]. Nature Photonics, 2013, 7(11): 37-42.

【27】Gulde M, Schweda S, Storeck G, et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics[J]. Science, 2014, 345(6193): 200-204.

【28】Ghimire S, Dichiara A D, Sistrunk E, et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2010, 7(2): 138-141.

【29】Mücke O D. Isolated high-order harmonics pulse from two-color-driven Bloch oscillations in bulk semiconductors[J]. Physical Review B, 2011, 84(8): 081202.

【30】Paaschcolberg T, Schiffrin A, Karpowicz N, et al. Optical-field-induced current in dielectrics[J]. Nature, 2013, 493(7430): 70-74.

【31】Schultze M, Bothschafter E M, Sommer A, et al. Controlling dielectrics with the electric field of light[J]. Nature, 2012, 493(7430): 75-78.

【32】Huang S W, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nature Photonics, 2011, 5(8): 475-479.

【33】Hassan M T, Wirth A, Grgura I, et al. Invited article: attosecond photonics: synthesis and control of light transients[J]. Review of Scientific Instruments, 2012, 83(11): 111301.

【34】Hassan M T, Luu T T, Moulet A, et al. Synthesis of isolated optical attosecond pulses[C]. 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, 12-16 May 2013, Munich, Germany, 2013: 14253224.

【35】Fang S, Yamane K, Zhu J, et al. Generation of sub-900-μJ supercontinuum with a two-octave bandwidth based on induced phase modulation in argon-filled hollow fiber[J]. IEEE Photonics Technology Letters, 2011, 23(11): 688-690.

【36】Fang S, Cirmi G, Chia S H, et al. Multi-mJ parametric synthesizer generating two-octave-wide optical waveforms[C]. Conference on Lasers & Electro-Optics Pacific Rim, 2013: 13777697.

【37】Krtner F X, Cirmi G, Ye H, et al. High-energy carrier-envelope phase-stable optical waveforms compressible to <1 fs using induced-phase modulation in argon-filled hollow-core fiber[C]. High Intensity Lasers & High Field Phenomena, 2014: HW1C.2.

【38】Fang S, Ye H, Cirmi G, et al. Above-millijoule optical waveforms compressible to sub-fs using induced-phase modulation in a neon-filled hollow-core fiber[C]. International Conference on Ultrafast Phenomena, 2014: 789-792.

【39】Tanigawa, Sakakibara Y, Fang S B, et al. Spatial light modulator of 648 pixels with liquid crystal transparent from ultraviolet to near-infrared and its chirp compensation application[J]. Optics Letters, 2009, 34(11): 1696-1698.

【40】Chia S H, Cirmi G, Fang S B, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315-322.

【41】Yamashita M, Shigekawa H, Morita R. Mono-cycle photonics and optical scanning tunneling microscopy[M]. Berlin Heidelberg: Springer-Verlag, 2005.

【42】Nisoli M, de Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters, 1996, 68(20): 2793-2795.

【43】Hassan M T, Luu T T, Moulet A, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature, 2016, 530(7588): 66-70.

【44】Mucke O D, Fang S B, Cirmi G, et al. Toward waveform nonlinear optics using multimillijoule sub-cycle waveform synthesizers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(5): 1-12.

【45】Bohman S, Suda A, Kanai T, et al. Generation of 50 fs, 50 mJ pulses at 1 kHz using hollow-fiber pulse compression[J]. Optics Letters, 2010, 35(11): 1887-1889.

【46】Nagy T, Pervak V, Simon P. Optimal pulse compression in long hollow fibers[J]. Optics Letters, 2011, 36(22): 4422-4424.

【47】Rothhardt J, Hdrich S, Delagnes J, et al. High average power near-infrared few-cycle lasers (laser photonics rev. 11(4)/2017)[J]. Laser & Photonics Reviews, 2017, 11(4): 1770041.

【48】Lu C H, Tsou Y J, Chen H Y, et al. Generation of intense supercontinuum in condensed media[J]. Optica, 2014, 1(6): 400-406.

【49】He P, Liu Y Y, Zhao K, et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level[J]. Optics Letters, 2017, 42(3): 474-477.

【50】Dubietis A, Jonuauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 1992, 88(4/5/6): 437-440.

【51】Martinez O E, Gordon J P, Fork R L. Negative group-velocity dispersion using refraction[J]. Journal of the Optical Society of America A, 1984, 1(10): 1003-1006.

【52】Fork R L, Brito Cruz C H, Becker P C, et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Optics Letters, 1987, 12(7): 483-485.

【53】Baltuka A, Wei Z Y, Pshenichnikov M S, et al. Optical pulse compression to 5 fs at a 1-MHz repetition rate[J]. Optics Letters, 1997, 22(2): 102-104.

【54】Kane S,Squier J. Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems[J]. Journal of the Optical Society of America B, 1997, 14(5): 1237-1244.

【55】Ricci A,Jullien A, Forget N, et al. Grism compressor for carrier-envelope phase-stable millijoule-energy chirped pulse amplifier lasers featuring bulk material stretcher[J]. Optics Letters, 2012, 37(7): 1196-1198.

【56】Yamashita M, Torizuka K, Sato T. A chirp-compensation technique using incident-angle changes of cavity mirrors in a femtosecond pulse laser[J]. IEEE Journal of Quantum Electronics, 1987, 23(11): 2005-2007.

【57】Szipcs R, Spielmann C, Krausz F, et al. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers[J]. Optics Letters, 1994, 19(3): 201-203.

【58】Krtner F X, Matuschek N, Schibli T, et al. Design and fabrication of double-chirped mirrors[J]. Optics Letters, 1997, 22(11): 831-833.

【59】Steinmeyer G. Femtosecond dispersion compensation with multilayer coatings: toward the optical octave[J]. Applied Optics, 2006, 45(7): 1484-1490.

【60】Matsubara E, Yamane K, Sekikawa T, et al. Generation of 26 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber[J]. Journal of the Optical Society of America B, 2007, 24(4): 985-989.

【61】Garduo-Mejía J, Greenaway A H, Reid D T. Programmable spectral phase control of femtosecond pulses by use of adaptive optics and real-time pulse measurement[J]. Journal of the Optical Society of America B, 2004, 21(4): 833-843.

引用该论文

Fang Shaobo,Wei Zhiyi. Sub-Optical-Cycle Coherent Waveform Synthesis (Invited Review)[J]. Acta Optica Sinica, 2019, 39(1): 0126006

方少波,魏志义. 亚周期超快光场相干合成技术(特邀综述)[J]. 光学学报, 2019, 39(1): 0126006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF