首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126013--1)

结构光场编译码通信研究进展(特邀综述)

Research Progress of Structured Light Coding/Decoding Communications (Invited Review)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

结构光场是一类对光波空间结构进行剪裁的特殊光场。广义的结构光场包括具有空间变化的幅度、相位、偏振分布和空间阵列分布的光场。结构光场因其独特性而在光学操控、显微、成像、计量、传感、非线性光学、天文学、量子科学和光通信等领域获得了广泛应用。基于结构光场的光通信技术包括复用通信和编译码通信。本文回顾了结构光场编译码通信的研究进展, 全面综述了结构光场的产生方法以及不同空间模式(轨道角动量模式、无衍射贝塞尔模式、线偏振模式、矢量模式、空间阵列)、不同编码方式(直接模式编码、高速映射)和不同应用场景(光子芯片、自由空间、光纤)的结构光场的编译码通信, 并对其未来发展趋势进行了分析和展望。结构光场编译码通信开发了光场空间域维度资源, 有望为解决光通信新容量危机和实现光通信可持续扩容提供潜在的解决方案。

Abstract

Structured light fields are a kind of special light fields that have tailored lightwave spatial structure. The generalized structured light fields are these kinds of fields including spatially variant amplitude, phase and polarization distribution as well as space array. Structured light fields have seen wide applications in optical manipulation, microscopy, imaging, metrology, sensing, nonlinear optics, astronomy, quantum science and optical communications owing to their distinct advantages. Structured light communication techniques include multiplexing communications and coding/decoding communications. In this review article, the recent progress of structured light coding/decoding communications is retrospected. Various generation methods of structured light fields and structured light coding/decoding communications with different spatial modes (orbital angular momentum mode, non-diffraction Bessel mode, linearly polarized mode, vector mode, space array), different coding methods (direct mode coding, high-speed mapping), and different scenarios (photonic chip, free space, fiber) are comprehensively reviewed. Future trend and perspective are also discussed. Structured light coding/decoding communications exploit the space domain dimensional resources of light fields, which provide a potential solution to address the new capacity crunch of optical communications and enable sustainable expansion of optical communications.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O438.2

DOI:10.3788/aos201939.0126013

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家自然科学基金(61761130082, 11774116, 11574001, 11274131)、湖北省自然科学基金(2018CFA048)、国家973计划(2014CB340004)、英国皇家学会“牛顿高级学者基金”、国家“万人计划”青年拔尖人才支持计划、华中科技大学学术前沿青年团队(2016QYTD05)

收稿日期:2018-11-22

修改稿日期:2018-12-03

网络出版日期:2018-12-04

作者单位    点击查看

王健:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074华中科技大学光学与电子信息学院, 湖北 武汉 430074
刘俊:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074华中科技大学光学与电子信息学院, 湖北 武汉 430074
赵一凡:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074华中科技大学光学与电子信息学院, 湖北 武汉 430074

联系人作者:王健(jwang@hust.edu.cn)

【1】Rubinsztein-Dunlop H, Forbes A, Berry M V, et al. Roadmap on structured light[J]. Journal of Optics, 2017, 19(1): 013001.

【2】Won R. Structured light spiralling up[J]. Nature Photonics, 2017, 11(10): 619-622.

【3】Geng J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160.

【4】Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

【5】Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

【6】Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Review, 2008, 2(4): 299-313.

【7】Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

【8】Padgett M J. Orbital angular momentum 25 years on[J]. Optics Express, 2017, 25(10): 11265-11274.

【9】Dholakia K, C^imár T. Shaping the future of manipulation[J]. Nature Photonics, 2011, 5(6): 335-342.

【10】Paterson L. Controlled rotation of optically trapped microscopic particles[J]. Science, 2001, 292(5518): 912-914.

【11】Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348.

【12】Bernet S, Jesacher A, Fürhapter S, et al. Quantitative imaging of complex samples by spiral phase contrast microscopy[J]. Optics Express, 2006, 14(9): 3792-3805.

【13】Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537-540.

【14】Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear Doppler effects[J]. Laser & Photonics Reviews, 2017, 11(6): 1700183.

【15】Vieira J, Trines R M G M, Alves E P, et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering[J]. Nature Communications, 2016, 7: 10371.

【16】Elias N M. Photon orbital angular momentum in astronomy[J]. Astronomy & Astrophysics, 2008, 492(3): 883-922.

【17】Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

【18】Leach J, Jack B, Romero J, et al. Quantum correlations in optical angle-orbital angular momentum variables[J]. Science, 2010, 329(5992): 662-665.

【19】Willner A E, Wang J, Huang H. A different angle on light communications[J]. Science, 2012, 337(6095): 655-656.

【20】Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

【21】Wang J. Advances in communications using optical vortices[J]. Photonics Research, 2016, 4(5): B14-B28.

【22】Wang J. Data information transfer using complex optical fields: a review and perspective (invited paper)[J]. Chinese Optics Letters, 2017, 15(3): 030005.

【23】Li S H, Chen S, Gao C Q, et al. Atmospheric turbulence compensation in orbital angular momentum communications: advances and perspectives[J]. Optics Communications, 2018, 408: 68-81.

【24】Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives[J]. Chinese Optics Letters, 2018, 16(5): 050006.

【25】Wang J. Twisted optical communications using orbital angular momentum[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(3): 034201.

【26】Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

【27】Fazal I M, Ahmed N, Wang J, et al. 2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels[J]. Optics Letters, 2012, 37(22): 4753-4755.

【28】Huang H, Xie G D, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength[J]. Optics Letters, 2014, 39(2): 197-200.

【29】Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 2015, 4(3): e257.

【30】Liu J, Wang J. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications[J]. Optics Express, 2016, 24(4): 4258-4269.

【31】Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

【32】Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2015, 2(3): 267-270.

【33】Li S H, Wang J. Supermode fiber for orbital angular momentum (OAM) transmission[J]. Optics Express, 2015, 23(14): 18736-18745.

【34】Chen S, Wang J. Characterization of Red/Green/Blue orbital angular momentum modes in conventional G.652 fiber[J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 6800414.

【35】Chen S, Wang J. Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre[J]. Scientific Reports, 2017, 7(1): 3990.

【36】Huang H, Milione G, Lavery M P J, et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre[J]. Scientific Reports, 2015, 5: 14931.

【37】Wang A D, Zhu L, Liu J, et al. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network[J]. Optics Express, 2015, 23(23): 29457-29466.

【38】Liu J, Li S M, Du J, et al. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system[J]. Optics Letters, 2016, 41(9): 1969-1972.

【39】Wang A D, Zhu L, Chen S, et al. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber[J]. Optics Express, 2016, 24(11): 11716-11726.

【40】Chen S, Liu J, Zhao Y F, et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber[J]. Scientific Reports, 2016, 6: 38181.

【41】Zhu L, Yang C, Xie D Q, et al. Demonstration of km-scale orbital angular momentum multiplexing transmission using 4-level pulse-amplitude modulation signals[J]. Optics Letters, 2017, 42(4): 763-766.

【42】Zhu L, Wang A D, Chen S, et al. Orbital angular momentum mode groups multiplexing transmission over 26-km conventional multi-mode fiber[J]. Optics Express, 2017, 25(21): 25637-25645.

【43】Wang A D, Zhu L, Wang L L, et al. Directly using 88-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission[J]. Optics Express, 2018, 26(8): 10038-10047.

【44】Zhu L, Wang A D, Chen S, et al. Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network[J]. Optics Letters, 2018, 43(8): 1894-1897.

【45】Zhu G X, Hu Z Y, Wu X, et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes[J]. Optics Express, 2018, 26(2): 594-604.

【46】Zhu L, Zhu G X, Wang A D, et al. 18 km low-crosstalk OAM+WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation[J]. Optics Letters, 2018, 43(8): 1890-1893.

【47】Liu J, Zhu L, Wang A D, et al. All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing[J]. Optics Letters, 2016, 41(16): 3896-3899.

【48】Liu J, Wang J. Demonstration of reconfigurable joint orbital angular momentum mode and space switching[J]. Scientific Reports, 2016, 6: 37331.

【49】Milione G, Lavery M P J, Huang H, et al. 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de) multiplexer[J]. Optics Letters, 2015, 40(9): 1980-1983.

【50】Liu J, Li S M, Zhu L, et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters[J]. Light: Science & Applications, 2017, 7(3): 17148.

【51】Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794-9805.

【52】Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6: 33306.

【53】Zhao Y F, Xu J, Wang A D, et al. Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link[J]. Optics Express, 2017, 25(23): 28743-28751.

【54】Zhao Y F, Wang A D, Zhu L, et al. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions[J]. Optics Letters, 2017, 42(22): 4699-4702.

【55】Wang L L, Ai J Z, Zhu L, et al. MDM transmission of CAP-16 signals over 11-km anti-bending trench-assisted elliptical-core few-mode fiber in passive optical networks[J]. Optics Express, 2017, 25(19): 22991-23002.

【56】Wang A D, Zhu L, Zhao Y F, et al. Adaptive water-air-water data information transfer using orbital angular momentum[J]. Optics Express, 2018, 26(7): 8669-8678.

【57】Zhao Y F, Cai C K, Zhang J R, et al. Feedback-enabled adaptive underwater twisted light transmission link utilizing the reflection at the air-water interface[J]. Optics Express, 2018, 26(13): 16102-16112.

【58】Winzer P J. Modulation and multiplexing in optical communications[C]. International Quantum Electronics Conference, 2009: CTuL3.

【59】Zhou X, Yu J J. Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission[J]. Journal of Lightwave Technology, 2009, 27(16): 3641-3653.

【60】Winzer P J, Gnauck A H, Doerr C R, et al. Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM[J]. Journal of Lightwave Technology, 2010, 28(4): 547-556.

【61】Qian D Y, Huang M F, Ip E, et al. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands[J]. Journal of Lightwave Technology, 2012, 30(10): 1540-1548.

【62】Richter T, Palushani E, Schmidt-Langhorst C, et al. Transmission of single-channel 16-QAM data signals at terabaud symbol rates[J]. Journal of Lightwave Technology, 2012, 30(4): 504-511.

【63】Olsson S L I, Cho J, Chandrasekhar S, et al. Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection[J]. Optics Express, 2018, 26(4): 4522-4530.

【64】Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362.

【65】Li G F, Bai N, Zhao N B, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487.

【66】Winzer P J. Spatial multiplexing in fiber optics: the 10X scaling of metro/core capacities[J]. Bell Labs Technical Journal, 2014, 19: 22-30.

【67】Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8(5): 345-348.

【68】Wang J, Li S, Li C, et al. Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over pol-muxed 22 orbital angular momentum (OAM) modes[C]. Optical Fiber Communication Conference, 2014: W1H.4.

【69】Wang J, Liu J, Lv X, et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals[C]. 2015 European Conference on Optical Communication (ECOC), 2015: 1-3.

【70】Wang J, Li S H, Luo M, et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes[C]. 2014 the European Conference on Optical Communication (ECOC), 2014: 1-3.

【71】Okida M, Omatsu T, Itoh M, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd∶YVO4 1.3-μm bounce laser[J]. Optics Express, 2007, 15(12): 7616-7622.

【72】Lee A J, Zhang C Y, Omatsu T, et al. An intracavity, frequency-doubled self-Raman vortex laser[J]. Optics Express, 2014, 22(5): 5400-5409.

【73】Miao P, Zhang Z F, Sun J B, et al. Orbital angular momentum microlaser[J]. Science, 2016, 353(6298): 464-467.

【74】Beijersbergen M W, Allen L, van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1/2/3): 123-132.

【75】Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. Journal of Optics, 2011, 13(6): 064001.

【76】Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5/6): 321-327.

【77】Oemrawsingh S S R, van Houwelingen J A W, Eliel E R, et al. Production and characterization of spiral phase plates for optical wavelengths[J]. Applied Optics, 2004, 43(3): 688-694.

【78】Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.

【79】Mirhosseini M, Magaa-Loaiza O S, Chen C C, et al. Rapid generation of light beams carrying orbital angular momentum[J]. Optics Express, 2013, 21(25): 30196-30203.

【80】Zhu L, Wang J. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators[J]. Scientific Reports, 2015, 4: 7441.

【81】Liu J, Wang J. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator[J]. Scientific Reports, 2015, 5: 9959.

【82】Maurer C, Jesacher A, Bernet S, et al. What spatial light modulators can do for optical microscopy[J]. Laser & Photonics Reviews, 2011, 5(1): 81-101.

【83】Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 2016, 8(2): 200-227.

【84】Yan Y, Wang J, Zhang L, et al. Fiber coupler for generating orbital angular momentum modes[J]. Optics Letters, 2011, 36(21): 4269-4271.

【85】Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes[J]. Optics Letters, 2012, 37(16): 3294-3296.

【86】Wong G K L, Kang M S, Lee H W, et al. Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber[J]. Science, 2012, 337(6093): 446-449.

【87】Li S H, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics Letters, 2015, 40(18): 4376-4379.

【88】Fang L, Wang J. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings[J]. Optics Letters, 2015, 40(17): 4010-4013.

【89】Yu Y F, Fu Y H, Zhang X M, et al. Pure angular momentum generator using a ring resonator[J]. Optics Express, 2010, 18(21): 21651-21662.

【90】Su T H, Scott R P, Djordjevic S S, et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices[J]. Optics Express, 2012, 20(9): 9396-9402.

【91】Zhang D K, Feng X, Huang Y D. Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip[J]. Optics Express, 2012, 20(24): 26986-26995.

【92】Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

【93】Guan B B, Scott R P, Qin C, et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit[J]. Optics Express, 2014, 22(1): 145-156.

【94】Strain M J, Cai X L, Wang J W, et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters[J]. Nature Communications, 2014, 5: 4856.

【95】Zheng S, Wang J. On-chip orbital angular momentum modes generator and (de) multiplexer based on trench silicon waveguides[J]. Optics Express, 2017, 25(15): 18492-18501.

【96】Du J, Wang J. Chip-scale optical vortex lattice generator on a silicon platform[J]. Optics Letters, 2017, 42(23): 5054-5057.

【97】Zhou N, Zheng S, Cao X P, et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip[J]. Optics Letters, 2018, 43(13): 3140-3143.

【98】Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

【99】Zhao Z, Wang J, Li S H, et al. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams[J]. Optics Letters, 2013, 38(6): 932-934.

【100】Li G X, Kang M, Chen S M, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light[J]. Nano Letters, 2013, 13(9): 4148-4151.

【101】Yang Y M, Wang W Y, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3): 1394-1399.

【102】Karimi E, Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

【103】Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array[J]. Scientific Reports, 2015, 5: 9662.

【104】Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-901.

【105】Zhao Y F, Du J, Zhang J R, et al. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm[J]. Applied Physics Letters, 2018, 112(17): 171103.

【106】Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer[J]. Optics Express, 2018, 26(10): 13183-13194.

【107】Chan V W S. Free-space optical communications[J]. Journal of Lightwave Technology, 2006, 24(12): 4750-4762.

【108】Ansari I S, Alouini M S, Cheng J L. Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors[J]. IEEE Transactions on Wireless Communications, 2015, 14(8): 4248-4264.

【109】Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.

【110】Gatto A, Tacca M, Martelli P, et al. Free-space orbital angular momentum division multiplexing with Bessel beams[J]. Journal of Optics, 2011, 13(6): 064018.

【111】Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499.

【112】Garcés-Chávez V, McGloin D, Melville H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 2002, 419(6903): 145-147.

【113】Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions[J]. Optics Letters, 2015, 40(21): 4827-4830.

【114】Willner A J, Ren Y X, Xie G D, et al. Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes[J]. Optics Letters, 2015, 40(24): 5810-5813.

【115】Ren Y X, Huang H, Xie G D, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Optics Letters, 2013, 38(20): 4062-4065.

【116】Zhao S M, Leach J, Gong L Y, et al. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states[J]. Optics Express, 2012, 20(1): 452-461.

【117】Li S H, Wang J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics[J]. Optics Letters, 2016, 41(7): 1482-1485.

【118】Ren Y X, Xie G D, Huang H, et al. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link[J]. Optica, 2014, 1(6): 376-382.

【119】Chen S, Li S H, Zhao Y F, et al. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation[J]. Optics Letters, 2016, 41(20): 4680-4683.

【120】Castro J M, Pimpinella R, Kose B, et al. 48.7-Gb/s 4-PAM transmission over 200 m of high bandwidth MMF using an 850-nm VCSEL[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1799-1801.

【121】Szczerba K, Westbergh P, Karlsson M, et al. 70 Gbps 4-PAM and 56 Gbps 8-PAM Using an 850 nm VCSEL[J]. Journal of Lightwave Technology, 2015, 33(7): 1395-1401.

【122】Karinou F, Deng L, Lopez R R, et al. Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects[J]. Optical Fiber Technology, 2013, 19(3): 206-212.

【123】Zhu L, Liu J, Mo Q, et al. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber[J]. Optics Express, 2016, 24(15): 16934-16944.

【124】Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23): 1948-1950.

【125】Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism[J]. Optics Letters, 2005, 30(22): 3063-3065.

【126】Ahmed M A, Voss A, Vogel M M, et al. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb∶YAG thin-disk lasers[J]. Optics Letters, 2007, 32(22): 3272-3274.

【127】Niziev V G, Chang R S, Nesterov A V. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer[J]. Applied Optics, 2006, 45(33): 8393-8399.

【128】Yoshiki K, Hashimoto M, Araki T. Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation[J]. Japanese Journal of Applied Physics, 2005, 44(34): L1066-L1068.

【129】Beversluis M R, Novotny L, Stranick S J. Programmable vector point-spread function engineering[J]. Optics Express, 2006, 14(7): 2650-2656.

【130】MacHavariani G, Lumer Y, Moshe I, et al. Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams[J]. Optics Communications, 2008, 281(4): 732-738.

【131】Bomzon Z, Biener G, Kleiner V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Optics Letters, 2002, 27(5): 285-287.

【132】Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

【133】Zhan Q W, Leger J. Focus shaping using cylindrical vector beams[J]. Optics Express, 2002, 10(7): 324-331.

【134】Zhao Y F, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 2015, 40(21): 4843-4846.

【135】Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna[J]. New Journal of Physics, 2014, 16(11): 113028.

【136】Krenn M, Handsteiner J, Fink M, et al. Twisted light transmission over 143 km[J]. Proceedings of the National Academy of Sciences, 2016, 113(48): 13648-13653.

【137】Li S H, Wang J. Experimental demonstration of optical interconnects exploiting orbital angular momentum array[J]. Optics Express, 2017, 25(18): 21537-21547.

【138】Wang J, Long Y. On-chip silicon photonic signaling and processing: a review[J]. Science Bulletin, 2018, 63(19): 1267-1310.

引用该论文

Wang Jian,Liu Jun,Zhao Yifan. Research Progress of Structured Light Coding/Decoding Communications (Invited Review)[J]. Acta Optica Sinica, 2019, 39(1): 0126013

王健,刘俊,赵一凡. 结构光场编译码通信研究进展(特邀综述)[J]. 光学学报, 2019, 39(1): 0126013

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF