首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:21602--1)

WC增强Ni60AA对裂纹与硬度的影响

Effect of WC-Reinforced Ni60AA on Cracks and Hardness

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用光纤激光器在冷模具钢的表面制备出含有原位WC增强的镍基合金陶瓷涂层。采用倒置金相显微镜观察熔覆层裂纹的宏观形貌以及冰晶状WC随比粉、比能和送粉电压的变化情况。采用显微硬度计测量熔覆层的显微硬度。结果表明:当WC和Ni60AA送粉电压比超过3∶2时, 熔覆层的裂纹不能通过调节比粉和比能消除, 熔覆层显微硬度随比能增大而减小, 随比粉的增大而增大, 且熔覆层的增高量符合多项式分布, 准确率高达96%以上。当WC和Ni60送粉电压比低于3∶7时, WC对熔覆层的硬度基本没有影响; 当送粉电压比超过4∶6时, 显微硬度跳跃式增加到780 HV。根据比粉和比能公式对基体增高量和熔化深度的影响特性调节激光熔覆的工艺参数, 能在消除熔覆层的裂纹的同时保持熔覆层的显微硬度在800 HV左右。

Abstract

The in-situ WC-reinforced nickel-based alloy ceramic coating is prepared on the surface of a cold die steel with a fiber laser. The inverted metallographic microscope is used to observe the macroscopic morphology of cracks in the cladding layer and the variation of the ice crystal WC with specific powder, specific energy and the powder feeding voltage. In addition, a microhardness tester is used to measure the microhardness of cladding layers. The results show that when the voltage ratio between WC and Ni60 powder exceeds 3∶2, the cracks in the cladding layer cannot be eliminated by the adjustments of specific powder and specific energy. The microhardness of the cladding layer increases with the increase of specific energy, while decreases with the increase of specific powder. Moreover, the increase of the cladding layer conforms to a polynomial distribution accuracy of up to 96%. In contrast, when the powder feeding voltage ratio between WC and Ni60 is lower than 3∶7, WC has nearly no effect on the microhardness of the cladding layer. However, when the powder feeding voltage ratio exceeds 4∶6, the microhardness jumps to 780 HV. According to the influence of the ratio between specific powder and specific energy on the increase and melting depth of the substrate, the process parameters of laser cladding are adjusted to eliminate the cracks of the cladding layer and simultaneously maintain the microhardness at about 800 HV.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG17

DOI:10.3788/lop56.021602

所属栏目:材料

基金项目:辽宁省科技厅项目(201602371)、辽宁省教育厅项目(L2015231)

收稿日期:2018-05-25

修改稿日期:2018-06-24

网络出版日期:2018-07-30

作者单位    点击查看

李高松:辽宁工业大学机械工程与自动化学院, 辽宁 锦州 121001
李金华:辽宁工业大学机械工程与自动化学院, 辽宁 锦州 121001
单鹏超:辽宁工业大学机械工程与自动化学院, 辽宁 锦州 121001
冯伟龙:辽宁工业大学机械工程与自动化学院, 辽宁 锦州 121001

联系人作者:李金华(647986515@qq.com)

【1】Xu B S, Fang J X, Dong S Y, et al. Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding FV520B stainless steel[J]. Acta Metallurgica Sinica, 2016, 52(1): 1-9.
徐滨士, 方金祥, 董世运, 等. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响[J]. 金属学报, 2016, 52(1): 1-9.

【2】Zhang T G, Sun R L. Microstructure and properties of Nano-Ti3Al laser cladding layer prepared on Ti811 alloy surface[J]. Chinese Journal of Lasers, 2018, 45(1): 0102002.
张天刚, 孙荣禄. Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能[J]. 中国激光, 2018, 45(1): 0102002.

【3】Wang T, Yao Y C, Wang N, et al. Microstructure and wear resistance of Co-based alloy coating fabricated by laser cladding[J]. Heat Treatment of Metals, 2017, 42(5): 84-89.
王涛, 姚有才, 王宁, 等. 激光熔覆钴基合金涂层的组织与耐磨性[J]. 金属热处理, 2017, 42(5): 84-89.

【4】Xu J S, Zhang X C, Xuan F Z, et al. Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle[J]. Journal of Materials Engineering and performance, 2012, 21(9): 1904-1911.

【5】Shon Y, Joshi S S, Katakam S, et al. Laser additive synthesis of high entropy alloy coating on aluminum: corrosion behavior[J]. Materials Letters, 2015, 142: 122-125.

【6】Zhang S, Wu C L, Zhang C H. Phase evolution characteristics of FeCoCrAlCuVx Ni high entropy alloy coatings by laser high-entropy alloying[J]. Materials Letters, 2015, 141: 7-9.

【7】Liu H Q, Liu X, Meng X J, et al. Crack formation mechanism and controlling methods of laser clad ceramic matrix composite coatings on metal substrate[J]. Materials Review A, 2013, 27(11): 60-63.
刘海青, 刘秀波, 孟祥军, 等. 金属基体激光熔覆陶瓷基复合涂层的裂纹成因及控制方法[J]. 材料导报A, 2013, 27(11): 60-63.

【8】Zhou S F, Xu Y B, Liao B Q, et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding[J]. Optics & Laser Technology, 2018, 103: 8-16.

【9】Zhong M L, Liu W J. Comparative research on cracking tendency in powder feeding laser cladding stellite and NiCrSiB alloys[J]. Chinese Journal of Lasers, 2002, 29(11): 1031-1036.
钟敏霖, 刘文今. Stellite和NiCrSiB合金激光送粉熔覆裂纹倾向的比较研究[J]. 中国激光, 2002, 29(11): 1031-1036.

【10】Wang D S, Tian Z J, Wang J W, et al. A method of crack control in laser cladding process with changing power density distribution of laser beam[J]. Chinese Journal of Lasers, 2011, 38(1): 0103004.
王东生, 田宗军, 王泾文, 等. 一种通过改变激光功率密度分布控制熔覆层裂纹的方法[J]. 中国激光, 2011, 38(1): 0103004.

【11】Song J L, Li Y T, Deng Q L, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29-39.
宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39.

【12】Wang L L, Wang X L, Xu T, et al. Effect of remelting time on microstructure of WC/Ni-based alloy composite cladding layers[J]. Machine Building & Automation, 2017, 46(1): 37-38, 119.
汪路路, 王小龙, 徐婷, 等. 重熔时间对WC/镍基合金复合熔覆层微观组织的影响[J]. 机械制造与自动化, 2017, 46(1): 37-38, 119.

【13】He L, Tan Y F, Tan H, et al. Microstructure and tribological properties of WC-CeO2/Ni-base alloy composite coatings[J]. Rare Metal Materials and Engineering, 2014, 43(4): 823-829.

【14】Li J, Zeng Q S, Yang Y, et al. Microstructure and properties study on laser cladding layer of Ni-based tungsten carbide alloy on 45 steel surface[J]. Mechanical Engineer, 2016(2): 52-53.
李建, 曾庆生, 杨毅, 等. 45钢激光熔覆镍基WC合金的组织与性能研究[J]. 机械工程师, 2016(2): 52-53.

【15】Weibull W.A statistical theory of the strength of materials[J]. Proceeding of the Royal Swedish Institute of Engineering Research, 1939, 151: 45-68.

【16】Weibull W.A statistical distribution of wide applicability[J]. Journal of Applied Mechanics, 1951, 18: 253-255.

引用该论文

Li Gaosong,Li Jinhua,Shan Pengchao,Feng Weilong. Effect of WC-Reinforced Ni60AA on Cracks and Hardness[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021602

李高松,李金华,单鹏超,冯伟龙. WC增强Ni60AA对裂纹与硬度的影响[J]. 激光与光电子学进展, 2019, 56(2): 021602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF