首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:21003--1)

考虑空间相关性的半监督局部保持投影的高光谱图像特征提取

Feature Extraction of Hyperspectral Images Based on Semi-Supervised Locality Preserving Projection with Spatial-Correlation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于高光谱图像具有波段多、波段间信息冗余、空间信息相关等特点, 提出一种考虑空间相关性的半监督局部保持投影(LPP)的高光谱图像特征提取算法(LPP-SCSSFE)。该算法利用保存高光谱图像空间近邻结构的空间距离, 及保持图像光谱相似性的类内判别权值和类间判别权值, 定义新的同物异谱、同谱异物像元权值计算函数, 结合LPP提取高光谱图像特征, 从而最大化同类地物间的相似性和异类地物间的差异性。在Indian Pines和Pavia University两个数据集上, 通过高光谱图像分类实验对本文提出的LPP-SCSSFE算法进行验证, 算法最高总体分类精度分别达到87.50%和91.29%, 优于现有的特征提取算法。结果表明, 本文算法充分考虑高光谱图像的空间相关性和光谱相似性, 能够有效提取出有代表性的特征, 提高分类精度。

Abstract

Based on the characteristics of multi-band, inter-band information redundancy and spatial information correlation of hyperspectral images, a spatially-correlated and semi-supervised feature extraction (SCSSFE) algorithm with locality preserving projection (LPP) is proposed. This algorithm defines a new pixel weight calculation function for the different spectral characteristics with the same objects and the different objects with the same spectral characteristics to preserve the spatial distance and the spectral similarity of hyperspectral image by means of the neighbor structure in image space and the intra-class and inter-class discriminant weights. Then, the features of hyperspectral images are extracted by the weight function combined with LPP. Thus the similarity among the same objects and the discrepancy among the different objects are maximized. The proposed LPP-SCSSFE algorithm is verified through the hyperspectral image classification experiments on the two datasets of Indian Pines and Pavia University. The highest overall classification accuracies of the LPP-SCSSFE algorithm reach 87.50% and 91.29% for the respective datasets, better than those of the existing feature extraction algorithms. These results indicate that the spatial correlation and the spectral similarity of hyperspectral images are fully taken into account in the proposed algorithm, and thus the more representative features are extracted and the classification accuracy is enhanced.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop56.021003

所属栏目:图像处理

基金项目:国家自然科学基金(41671431)、上海市科学技术委员会科研计划项目(15590501900)、上海市高校特聘教授(东方学者)项目(TP201638)

收稿日期:2018-05-21

修改稿日期:2018-06-01

网络出版日期:2018-07-30

作者单位    点击查看

黄冬梅:上海海洋大学信息学院, 上海 201306上海电力大学, 上海 200090
张晓桐:上海海洋大学信息学院, 上海 201306
张明华:上海海洋大学信息学院, 上海 201306
宋巍:上海海洋大学信息学院, 上海 201306
王龑:上海海洋大学信息学院, 上海 201306

联系人作者:张明华(mhzhang@shou.edu.cn)

【1】Liu B, Yu X C, Zhang P Q, et al. Supervised deep feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1909-1921.

【2】Wang J N. Hyperspectral image classification based on joint sparse representation and morphological feature extraction[J]. Laser & Optoelectronics Progress, 2016, 53(8): 082801.
王佳宁. 基于联合稀疏表示与形态特征提取的高光谱图像分类[J]. 激光与光电子学进展, 2016, 53(8): 082801.

【3】Liao J S, Wang L G. Hyperspectral image classification method based on fusion with two kinds of spatial information[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081002.
廖建尚, 王立国. 两类空间信息融合的高光谱图像分类方法[J]. 激光与光电子学进展, 2017, 54(8): 081002.

【4】Huang H, He K, Zheng X L, et al. Spatial-spectral feature extraction of hyperspectral image based on deep learning[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101001.
黄鸿, 何凯, 郑新磊, 等. 基于深度学习的高光谱图像空-谱联合特征提取[J]. 激光与光电子学进展, 2017, 54(10): 101001.

【5】Hou B H, Yao M L, Wang R, et al. Spatial-spectral semi-supervised local discriminant analysis for hyperspectral image classification[J]. Acta Optica Sinica, 2017, 37(7): 0728002.
侯榜焕, 姚敏立, 王榕, 等. 面向高光谱图像分类的空谱半监督局部判别分析[J]. 光学学报, 2017, 37(7): 0728002.

【6】Li D R, Zhang L P, Xia G S. Automatic analysis andmining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211-1216.
李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12): 1211-1216.

【7】Lu G F, Wang Y, Zou J, et al. Matrix exponential based discriminant locality preserving projections for feature extraction[J]. Neural Networks, 2018, 97: 127-136.

【8】Sellami A, Farah I R. A spatial hypergraph based semi-supervised band selection method for hyperspectral imagery semantic interpretation[J]. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 2016, 10(10): 1839-1846.

【9】Zhang B. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5): 1062-1090.
张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5): 1062-1090.

【10】Gan Y H, Luo F L, Liu J H, et al. Feature extraction based multi-structure manifold embedding for hyperspectral remote sensing image classification[J]. IEEE Access, 2017, 5: 25069-25080.

【11】Lodha S P, Kamlapur S. Dimensionality reduction techniques for hyperspectral images[J]. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 2014, 3(10): 92-99.

【12】Zhang X R, Huyan N, Zhou N, et al. Semi-supervised sparse dimensionality reduction for hyperspectral image classification[C]∥2016 IEEE Region 10 Conference, November 22-25, 2016, Singapore. New York: IEEE, 2016: 2830-2833.

【13】Xue S Z, Tan R, Chen X H. Method of kernel-based semi-supervised locality preserving projection[J]. Journal of Computer Applications, 2012, 32(8): 2235-2237, 2244.
薛寺中, 谈锐, 陈秀宏. 基于核的半监督的局部保留投影降维方法[J]. 计算机应用, 2012, 32(8): 2235-2237, 2244.

【14】Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 37-52.

【15】He X F. Locality preserving projectionsp[D]. Chicago: University of Chicago, 2005.

【16】Zhang J B, Wang J K, Cai X. Sparse locality preserving discriminative projections for face recognition[J]. Neurocomputing, 2017, 260: 321-330.

【17】Wan M H, Lai Z H. Multi-manifold locality graph embedding based on the maximum margin criterion (MLGE/MMC) for face recognition[J]. IEEE Access, 2017, 5: 9823-9830.

【18】Huang Y, Tang K, Sun Z. Locality sensitive discriminant analysis for classification of hyperspectral data[C]∥2014 7th International Congress on Image and Signal Processing, October 14-16, 2014, Dalian, China. New York: IEEE, 2014: 292-296.

【19】He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding[C]∥Tenth IEEE International Conference on Computer Vision (ICCV’05), October 17-21, 2005, Beijing, China. New York: IEEE, 2005, 2: 1208-1213.

【20】Wu Z Y, Hou B Y, Wang H B, et al. Semi-supervised sparsity neighboring preserving projection[J]. Systems Engineering and Electronics, 2018, 40(4): 934-940.
吴振宇, 侯冰洋, 王辉兵, 等. 半监督稀疏近邻保持投影[J]. 系统工程与电子技术, 2018, 40(4): 934-940.

【21】Lu X H, He Z Y, Yi S Y, et al. Joint of locality-and globality-preserving projections[J]. Signal, Image and Video Processing, 2018, 12(3): 565-572.

【22】Pan Y S, Wang P F, Huang H, et al. Hyperspectral remote sensing image classification based on SSLPP[J]. Computer Science, 2013(S2): 333-336, 373.
潘银松, 王攀峰, 黄鸿, 等. 基于SSLPP算法对高光谱遥感影像分类[J]. 计算机科学, 2013(S2): 333-336, 373.

【23】Du W B, Lü M, Hou Q L, et al. Semisupervised dimension reduction based on pairwise constraint propagation for hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1880-1884.

【24】Huang H, Huang Y B. Improved discriminant sparsity neighborhood preserving embedding for hyperspectral image classification[J]. Neurocomputing, 2014, 136: 224-234.

【25】He F, Wang R, Yu Q, et al. Feature extraction of hyperspectral images of weighted spatial and spectral locality preserving projection (WSSLPP)[J]. Optics and Precision Engineering, 2017, 25(1): 263-273.
何芳, 王榕, 于强, 等. 加权空谱局部保持投影的高光谱图像特征提取[J]. 光学 精密工程, 2017, 25(1): 263-273.

引用该论文

Huang Dongmei,Zhang Xiaotong,Zhang Minghua,Song Wei,Wang Yan. Feature Extraction of Hyperspectral Images Based on Semi-Supervised Locality Preserving Projection with Spatial-Correlation[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021003

黄冬梅,张晓桐,张明华,宋巍,王龑. 考虑空间相关性的半监督局部保持投影的高光谱图像特征提取[J]. 激光与光电子学进展, 2019, 56(2): 021003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF