首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:23001--1)

基于热红外光谱的人脸特征提取算法

Extraction Algorithm of Face Features Based on Thermal Infrared Spectra

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于可见光谱人脸识别技术的效率和精度受光照、姿态、遮挡、表情变化和照片欺诈等因素的影响较大, 尤其是夜视环境下的人脸识别难题亟待解决。为此, 提出了一种基于热红外光谱的人脸特征提取算法。对热红外人脸图像进行数据建模获取极大化数据模型, 估计并调整混合模型参数到高斯混合模型; 提取热红外高斯混合人脸图像的等温特征, 实现热特征图像的重建; 最后通过计算概率邻近指数来度量个体间的相似度, 给出识别结果。UCHThermalFace数据库的实验结果表明:该方法应对夜视环境下的多姿态、特征变化、随机遮挡和眼部噪声样本具有较高的识别精度和稳健性, 极大地提高了人脸识别系统夜视环境下的抗干扰能力。

Abstract

At present, the efficiency and accuracy of face recognition based on visible spectra are strongly influenced by the factors such as lighting, pose, occlusion, expression change and photo fraud, especially the face recognition problems in the night vision environments need to be solved. A face feature extraction algorithm based on thermal infrared spectra is proposed. The thermal infrared face images are modeled to obtain a maximal data model, and the mixed model parameters are estimated and adjusted as a Gaussian mixture model. The isothermal features of thermal infrared Gaussian mixture face images are extracted, and the thermal feature images are reconstructed. The similarity between individuals measured by the calculation of probabilistic proximity index is used to present the recognition results. The experimental results based on the UCHThermalFace database show that the proposed method has relatively high recognition precision and robustness to multiple attitudes, feature changes, random occlusion and eye noise samples, which greatly improves the anti-interference ability of face recognition system in night vision environments.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/lop56.023001

所属栏目:光谱学

基金项目:国家自然科学基金(61403123)、河南省科技攻关项目(182102210253, 182102210251)

收稿日期:2018-06-21

修改稿日期:2018-07-25

网络出版日期:2018-07-30

作者单位    点击查看

栗科峰:河南工程学院电气信息工程学院, 河南 郑州 451191
黄全振:河南工程学院电气信息工程学院, 河南 郑州 451191
卢金燕:河南工程学院电气信息工程学院, 河南 郑州 451191

联系人作者:栗科峰(kefengli922@126.com)

【1】Xia J, Pei D, Wang Q Z, et al. Face recognition based on local adaptive ternary derivative pattern coupled with Gabor feature[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111004.
夏军, 裴东, 王全州, 等. 融合Gabor特征的局部自适应三值微分模式的人脸识别[J]. 激光与光电子学进展, 2016, 53(11): 111004.

【2】Li Y Q, Li Y J, Li H B, et al. Fusion of global and local various feature for facial expression recognition[J]. Acta Optica Sinica, 2014, 34(5): 0515001.
李雅倩, 李颖杰, 李海滨, 等. 融合全局和局部多样性特征的人脸表情识别[J]. 光学学报, 2014, 34(5): 0515001.

【3】Chen M S, Cai Z S. Study on fusion of visual and infrared images based on NSCT[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061002.
陈木生, 蔡植善. 基于NSCT的红外与可见光图像融合方法研究[J]. 激光与光电子学进展, 2015, 52(6): 061002.

【4】Hermosilla G, Ruiz-del-Solar J, Verschae R. A comparative study of thermal face recognition methods in unconstrained environments[J]. Pattern Recognition, 2012, 45(7): 2445-2459.

【5】Chen X, Flynn P J, Bowyer K W. PCA-based face recognition in infrared imagery: Baseline and comparative studies[C]∥2003 IEEE International SOI Conference. Proceedings, October 17, 2003, Nice, France, France. New York: IEEE, 2003: 127-134.

【6】Socolinsky D A, Selinger A, Neuheisel J D. Face recognition with visible and thermal infrared imagery[J]. Computer Vision and Image Understanding, 2003, 91(1/2): 72-114.

【7】Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis[J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1450-1464.

【8】Akhloufi M A, Bendada A. Infrared face recognition using distance transforms[J]. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 2008, 2(4): 1002-1005.

【9】Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.

【10】Chen J, Shan S G, He C, et al. WLD: A robust local image descriptor[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1705-1720.

【11】Chen X, Hu F Y, Liu Z L, et al. Multi-resolution elongated CS-LDP with Gabor feature for face recognition [J]. International Journal of Biometrics, 2016, 8(1): 19-32.

【12】Xie Z H, Jiang P, Zhang S. Fusion of LBP and HOG using multiple kernel learning for infrared face recognition[C]∥2017 IEEE/ACIS 16th International Conference on Computer and Information Science, May 24-26, 2017, Wuhan, China. New York: IEEE, 2017: 81-84.

【13】Hermosilla G, Gallardo F, Farias G, et al. Fusion of visible and thermal descriptors using genetic algorithms for face recognition systems[J]. Sensors, 2015, 15(8): 17944-17962.

【14】Ghiass R S, Arandjelovic O, Bendada A, et al. Infrared face recognition: A comprehensive review of methodologies and databases[J]. Pattern Recognition, 2014, 47(9): 2807-2824.

【15】Fonnegra R D, Molina A, Pérez-Zapata A F, et al. MSpecFace: A dataset for facial recognition in the visible, ultra violet and infrared spectra[C]∥Botto-Tobar M, Esparza-Cruz N, León-Acurio J, et al. International Conference on Technology Trends 2017: Communications in Computer and Information Science, Cham: Springer, 2017, 798: 160-170.

引用该论文

Li Kefeng,Huang Quanzhen,Lu Jinyan. Extraction Algorithm of Face Features Based on Thermal Infrared Spectra[J]. Laser & Optoelectronics Progress, 2019, 56(2): 023001

栗科峰,黄全振,卢金燕. 基于热红外光谱的人脸特征提取算法[J]. 激光与光电子学进展, 2019, 56(2): 023001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF