首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:21203--1)

基于海森矩阵与区域增长的激光条纹中心提取

Laser Stripe Center Extraction Based on Hessian Matrix and Regional Growth

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

准确、快速地提取结构光条纹中心是三维测量系统中的关键问题。针对现存的结构光条纹中心提取精度与速度之间的矛盾, 提出一种全新的基于海森(Hessian)矩阵与区域增长相结合的激光条纹中心提取方法。采用自适应阈值法提取图像的感兴趣区域, 利用灰度值最大法确定像素级条纹中心的初始位置; 利用Hessian矩阵求取初始点法线方向上的亚像素级光条中心点; 将光条中心点作为种子点进行区域增长迭代运算, 从而精确提取条纹中心。区域增长算法解决了传统方法中存在的大量高斯卷积运算的问题, 提高了条纹中心的提取速度。实验结果表明, 该算法提取的条纹中心准确度高, 满足三维测量系统中实时在线的要求。该算法的均方差相比于灰度重心法降低了2.02 pixel, 提取速度相比于Steger法提高了40倍。

Abstract

The accurate and fast extraction of structured light stripe centers is a key problem in a three-dimensional (3D) measurement system. Aiming at the existing contradiction between extraction precision and speed of structured light stripe centers, a novel laser stripe center extraction method is proposed based on the Hessian matrix and the regional growth. First, the adaptive threshold method is used to extract the region of interest from the images, and the initial position of the pixel-level stripe center is determined by the maximum value of the gray value. Second, the sub-pixel-level strip center point in the normal direction of the initial point is obtained by the Hessian matrix. Finally, the strip center is used as a seed point for the regional growth iteration operation and thus the stripe center is accurately extracted. In the regional growth algorithm, the problem of a large number of Gaussian convolutional operations in the traditional method is solved, and the extraction speed of the stripe center is increased. The experimental results show that the stripe center extracted by the proposed algorithm has a high accuracy and the real-time online requirements of the 3D measurement system is satisfied. The mean square error (RMS) of this algorithm is reduced by 2.02 pixel compared with that of gray-gravity algorithm, and the extraction speed is 40 times higher than that of Steger algorithm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop56.021203

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金 (11704263)、辽宁省自然科学基金(201602616)、辽宁省教育厅科学研究项目(L2015443)

收稿日期:2018-06-27

修改稿日期:2018-07-10

网络出版日期:2018-07-30

作者单位    点击查看

刘剑:沈阳建筑大学信息与控制工程学院, 辽宁 沈阳 110168
刘丽华:沈阳建筑大学信息与控制工程学院, 辽宁 沈阳 110168

联系人作者:刘丽华(1679417015@qq.com)

【1】Zhang L, Ke W, Ye Q, et al. A novel laser vision sensor for weld line detection on wall-climbing robot[J]. Optics & Laser Technology, 2014, 60(2): 69-79.

【2】Liu P. Research on multi-scale multimodal biomedical imaging techniques of chronic wound optical phantom[D]. Hefei: University of Science and Technology of China, 2016.
刘鹏. 慢性伤口光学仿体的多尺度多模态医学影像技术研究[D]. 合肥: 中国科学技术大学, 2016.

【3】Singh R, Baby B, Suri A, et al. Comparison of laser and structured light scanning techniques for neurosurgery applications[C]∥IEEE 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN), February 11-12, 2016, Noida, India. New York: IEEE, 2016: 301-305.

【4】Dong L, Yang X C, Lei J B. Off-line automatic programming research of laser remanufacturing robot based on machine vision[J]. Chinese Journal of Lasers, 2013, 40(10): 1003006.
董玲, 杨洗陈, 雷剑波. 基于机器视觉的激光再制造机器人离线自动编程研究[J]. 中国激光, 2013, 40(10): 1003006.

【5】Lin S J. Research on reverse engineering technology based on line structured light vision measurement[D]. Guangzhou: Guangdong University of Technology, 2015.
林晟杰. 基于线结构光视觉测量的逆向工程技术研究[D]. 广州: 广东工业大学, 2015.

【6】Li Y Y, Zhang Z Y, Yuan L. Survey on linear structured light stripe center extraction[J]. Laser & Optoelectronics Progress, 2013, 50(10): 100002.
李莹莹, 张志毅, 袁林. 线结构光光条中心提取综述[J]. 激光与光电子学进展, 2013, 50(10): 100002.

【7】Liu B, Shen K, Wei Z C, et al. High-precision measurement system for micro-diameter based on structured-light vision technology[J]. Chinese Journal of Scientific Instrument, 2014, 35(S2): 126-129.
刘斌, 沈康, 魏兆超, 等. 基于线结构光视觉技术的微小直径高精度测量系统[J]. 仪器仪表学报, 2014, 35(S2): 126-129.

【8】Zhang X Y, Wang X Q, Bai F Z, et al. Improved gray centroid method for extracting the centre-line of light-stripe[J]. Laser & Infrared, 2016, 46(5): 622-626.
张小艳, 王晓强, 白福忠, 等. 基于改进灰度重心法的光带中心提取算法[J]. 激光与红外, 2016, 46(5): 622-626.

【9】Liu T, Wang Z Y, Yu X, et al. Curve fitting method based on adaptive window for center extracting of structured light stripe[J]. Semiconductor Optoelectronics, 2010, 31(1): 151-154.
刘涛, 王宗义, 于秀辉, 等. 基于自适应窗曲线拟合的结构光条纹中心提取[J]. 半导体光电, 2010, 31(1): 151-154.

【10】Liu Z, Li S, Feng C. Laser stripe center extraction based on cross-correlation algorithm[J]. Chinese Journal of Lasers, 2013, 40(5): 0508004.
刘振, 李声, 冯常. 基于互相关算法的激光条纹中心提取[J]. 中国激光, 2013, 40(5): 0508004.

【11】Jiang Y F, Jiang K Y, Lin J Y. Extrication method for sub-pixel center of linear structured light stripe[J]. Laser & Optoelectronics Progress, 2015, 52(7): 071502.
江永付, 江开勇, 林俊义. 线结构光光条中心亚像素精确提取方法[J]. 激光与光电子学进展, 2015, 52(7): 071502.

【12】Li T T, Yang F, Li C, et al. Exposure time optimization for line structured light sensor based on light stripe reliability evaluation[J]. Acta Optica Sinica, 2018, 38(1): 0112005.
李涛涛, 杨峰, 李策, 等. 基于光条信度评价的线结构光传感器曝光时间优化[J]. 光学学报, 2018, 38(1): 0112005.

【13】Steger C. An unbiased detector of curvilinear structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(2): 113-125.

【14】Yang W. Dissertation for the master degree in engineering[D]. Harbin: Harbin Institute of Technology, 2009.
杨尉. 结构光光条中心提取方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

【15】Li T T, Yang F, Xu X L. Method of large-scale measurement based on multi-vision line structured light sensor[J]. Chinese Journal of Lasers, 2017, 44(11): 1104003.
李涛涛, 杨峰, 许献磊. 基于多视觉线结构光传感器的大尺度测量方法[J]. 中国激光, 2017, 44(11): 1104003.

【16】Cai H Y, Feng Z D, Huang Z H. Centerline extraction of structured light stripe based on principal component analysis[J]. Chinese Journal of Lasers, 2015, 42(3): 0308006.
蔡怀宇, 冯召东, 黄战华. 基于主成分分析的结构光条纹中心提取方法[J]. 中国激光, 2015, 42(3): 0308006.

【17】Xie Z X, Chi S K, Wang X M, et al. Calibration method for structure-light auto-scanning measurement system based on coplanarity[J]. Chinese Journal of Lasers, 2016, 43(3): 0308003.
解则晓, 迟书凯, 王晓敏, 等. 基于共面法的结构光自扫描测量系统参数标定方法[J]. 中国激光, 2016, 43(3): 0308003.

【18】Zhang L B. Fast detection of visual saliency regions in remote sensing image based on region growing[J]. Chinese Journal of Lasers, 2012, 39(11): 1114001.
张立保. 基于区域增长的遥感影像视觉显著目标快速检测[J]. 中国激光, 2012, 39(11): 1114001.

【19】Liu L, Chu C Y, Ma J W, et al. CT image segmentation based on support vector machine and regional growth[J]. Computer Science, 2010, 37(5): 237-239.
刘露, 楚春雨,马建为, 等. 支持向量机与区域增长相结合的CT图像并行分割[J]. 计算机科学, 2010, 37(5): 237-239.

引用该论文

Liu Jian,Liu Lihua. Laser Stripe Center Extraction Based on Hessian Matrix and Regional Growth[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021203

刘剑,刘丽华. 基于海森矩阵与区域增长的激光条纹中心提取[J]. 激光与光电子学进展, 2019, 56(2): 021203

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF