首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:20602--1)

单通道与多通道多极格子孤子及其动力学行为

Properties and Dynamical Behaviors of Single-Channel and Multi-Channel Multi-Polar Lattice Solitons

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于非线性薛定谔方程, 研究了具有光格子的局域非线性介质中存在的单通道和多通道多极格子孤子的光场分布、稳定性和动力学行为。研究发现, 系统中存在同相和反相2种类型的多通道多极格子孤子; 在单通道情形下, 只存在反相多极格子孤子, 同相的多极格子孤子不存在; 在3种类型的格子中, 同相多极格子孤子的稳定性最差, 而多通道反相多极格子孤子的稳定性最高。在撤去光格子的情况下, 3类格子孤子呈现出不同的动力学行为。同相多极格子孤子分裂成相应数目的光束后, 或合并成1个光束、或能量重新分配、或周期性碰撞。而反相多极格子孤子分裂后, 光束相互排斥, 2个边带光束沿直线路径向前传输, 且轨迹与原传播方向的夹角相等; 在传播常数较小时, 可能会出现光束弥散。这些性质对全光路由、全光开关等全光控制技术的研究有一定的参考作用。

Abstract

Based on nonlinear Schrdinger equation, we research the light field properties, including the distribution and the stability, and dynamical behaviors of multi-polar lattice solitons, distributed on a single channel or across different channels in nonlinear media with optical lattices. These survey results indicate that there are two kinds of multi-polar solitons such as in-phase soliton and out-of-phase soliton in such systems. Significantly, multi-polar lattice soliton distributed on a single channel can only be out-of-phase, but an in-phase multi-polar lattice soliton is not allowed. Among three kinds of multi-polar lattice solitons, stability of in-phase multi-polar lattice soliton is the worst, and that of out-of-phase multi-polar lattice soliton distributed across different channels is the best. If optical lattice is removed, three kinds of multi-polar lattice solitons present different dynamical behaviors. After the optical lattice is removed, an in-phase multi-polar lattice soliton first splits into a corresponding number of light beams, and then they merge into one beam, or their energy is redistributed, or they collide periodically. Nevertheless, the out-of-phase multi-polar lattice soliton splits into several light beams, and then the beams repel each other, in which two side light beams transmit forwards along their respective straight trajectories, and the angle between any of their straight trajectories and its original direction of propagation is equal; especially, light beams, generated from the fission of out-of-phase multi-polar lattice soliton with a small propagation constant, may diffuse when the optical lattice is withdrawn. These results may have certain value to all-optical controlling techniques such as all-optical routing and all-optical switching.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437.5

DOI:10.3788/lop56.020602

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(11547007)、量子光学与光量子器件国家重点实验室开放课题(KF201812、KF201815)

收稿日期:2018-07-17

修改稿日期:2018-08-06

网络出版日期:2018-08-08

作者单位    点击查看

张华峰:长江大学量子光学与信息光子学研究所, 湖北 荆州 434023山西大学量子光学与光量子器件国家重点实验室, 山西 太原 030006
李继军:长江大学物理与光电工程学院, 湖北 荆州 434023
陈方:长江大学量子光学与信息光子学研究所, 湖北 荆州 434023长江大学物理与光电工程学院, 湖北 荆州 434023
郁春潮:长江大学量子光学与信息光子学研究所, 湖北 荆州 434023长江大学物理与光电工程学院, 湖北 荆州 434023
孙利辉:长江大学量子光学与信息光子学研究所, 湖北 荆州 434023长江大学物理与光电工程学院, 湖北 荆州 434023

联系人作者:张华峰(zhhf72@126.com)

【1】Kivshar Y S, Agrawal G P. Optical solitons: from fibers to photonic crystals[M]. Elsevier: Academic Press, 2003.

【2】Agrawal G P. Nonlinear fiber optics[M]. Berlin, Heidelberg: Springer, 2000: 195-211.

【3】Agrawal G P. Applications ofnonlinear fiber optics[M]. Cambridge: Academic Press, 2010.

【4】Liu S M, Guo R, Xu J J. Photorefractive nonlinear optics and its applications[M]. Beijing: Science Press, 2004.
刘思敏, 郭儒, 许京军. 光折变非线性光学及其应用[M]. 北京: 科学出版社, 2004.

【5】Efremidis N K, Sears S, Christodoulides D N, et al. Discrete solitons in photorefractive optically induced photonic lattices[J]. Physical Review E, 2002, 66(4): 046602.

【6】Fleischer J W, Carmon T, Segev M, et al. Observation of discrete solitons in optically induced real time waveguide arrays[J]. Physical Review Letters, 2003, 90(2): 023902.

【7】Fleischer J W, Segev M, Efremidis N K, et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices[J]. Nature, 2003, 422(6928): 147-150.

【8】Neshev D, Sukhorukov A A, Hanna B, et al. Controlled generation and steering of spatial gap solitons[J]. Physical Review Letters, 2004, 93(8): 083905.

【9】Cao Z, Li X J, Tan Q G, et al. Trajectory variations of optical Bloch oscillations for Airy beams in transversely and longitudinally modulated photonic lattices[J]. Applied Optics, 2017, 56(12): 3484-3490.

【10】Yang J K, Musslimani Z H. Fundamental and vortex solitons in a two-dimensional optical lattice[J]. Optics Letters, 2003, 28(21): 2094-2096.

【11】Neshev D N, Alexander T J, Ostrovskaya E A, et al. Observation of discrete vortex solitons in optically induced photonic lattices[J]. Physical Review Letters, 2004, 92(12): 123903.

【12】Musslimani Z H, Yang J K. Self-trapping of light in a two-dimensional photonic lattice[J]. Journal of the Optical Society of America B, 2004, 21(5): 973-981.

【13】Fleischer J W, Bartal G, Cohen O, et al. Observation of vortex-ring “discrete” solitons in 2D photonic lattices[J]. Physical Review Letters, 2004, 92(12): 123904.

【14】Wang X S, Chen Z G, Kevrekidis P G. Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices[J]. Physical Review Letters, 2006, 96(8): 083904.

【15】Kartashov Y V, Vysloukh V A, Torner L. Rotary solitons in Bessel optical lattices[J]. Physical Review Letters, 2004, 93(9): 093904.

【16】Suntsov S, Makris K G, Christodoulides D N, et al. Observation of discrete surface solitons[J]. Physical Review Letters, 2006, 96(6): 063901.

【17】Makris K G, Suntsov S, Christodoulides D N, et al. Discrete surface solitons[J]. Optics Letters, 2005, 30(18): 2466-2468.

【18】Xu S L, Beli M R, Cai D P, et al. Vortex solitons produced in spatially modulated linear and nonlinear refractive index waveguides[J]. Journal of the Optical Society of America B, 2018, 35(2): 410-416.

【19】Xie K, Boardman A D, Li Q, et al. Spatial algebraic solitons at the Dirac point in optically induced nonlinear photonic lattices[J]. Optics Express, 2017, 25(24): 30349-30364.

【20】Kartashov Y V, Vysloukh V A, Torner L. Asymmetric soliton mobility in competing linear-nonlinear parity-time-symmetric lattices[J]. Optics Letters, 2016, 41(18): 4348-4351.

【21】Zhou K Y, Wei TT, Sun H P, et al. Soliton dynamics in a PT-symmetric optical lattice with a longitudinal potential barrier[J]. Optics Express, 2015, 23(13): 16903-16911.

【22】Lopez-Aguayo S, Ruelas-Valdez C, Perez-Garcia B, et al. Quasi-one-dimensional optical lattices for soliton manipulation[J]. Optics Letters, 2014, 39(22): 6545-6548.

【23】Li Y L, Qin Y L, Mao S Y, et al. Propagation characteristics of optical solitons in parity-time symmetric potentials with longitudinal barriers[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081901.
李屹磊, 覃亚丽, 毛盛益, 等. 宇称-时间对称纵向势垒中光孤子的传播特性[J]. 激光与光电子学进展, 2017, 54(8): 081901.

【24】Chen S F, Xu S L. Transmission characteristics of two-dimensional optical soliton through photoisomerization[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050601.
陈顺芳, 徐四六. 二维光致异构光孤子传输特性的研究[J]. 激光与光电子学进展, 2018, 55(5): 050601.

【25】Wang Y, Zhang P, Li X Y, et al. Optical communication performance of solitonic pulses in weak oceanic turbulence[J]. Chinese Journal of Lasers, 2018, 45(5): 0506004.
王阳, 张鹏, 李晓燕, 等. 海洋弱湍流条件下光孤子脉冲通信性能[J]. 中国激光, 2018, 45(5): 0506004.

【26】Xu Z Y, Kartashov Y V, Torner L. Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media[J]. Optics Letters, 2005, 30(23): 3171-3173.

【27】Kartashov Y V, Malomed B A, Kivshar Y S. Solitons in nonlinear lattices[J]. Review of Modern Physics, 2011, 83(1): 247-305.

【28】Birnbaum Z, Malomed B A. Families of spatial solitons in a two-channel waveguide with the cubic-quintic nonlinearity[J]. Physica D, 2008, 237(24): 3252-3262.

【29】Dong L W, Ye F W. Shaping solitons by lattice defects[J]. Physical Review A, 2010, 82(5): 053829.

【30】Ablowitz M J, Antar N, Bakrta, et al. Vortex and dipole solitons in complex two-dimensional nonlinear lattices[J]. Physical Review A, 2012, 86(3): 033804.

【31】He Y J, Wang H Z. (1+1)-dimensional dipole solitons supported by optical lattice[J]. Optics Express, 2006, 14(21): 9832-9837.

【32】Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in Fortran 77: the art of scientific computing[M]. New York: Cambridge University Press, 2001: 753-764.

【33】Louis P J Y, Ostrovskaya E A, Savage C M, et al. Bose-Einstein condensates in optical lattices: band-gap structure and solitons[J]. Physical Review A, 2003, 67(1): 013602.

引用该论文

Zhang Huafeng,Li Jijun,Chen Fang,Yu Chunchao,Sun Lihui. Properties and Dynamical Behaviors of Single-Channel and Multi-Channel Multi-Polar Lattice Solitons[J]. Laser & Optoelectronics Progress, 2019, 56(2): 020602

张华峰,李继军,陈方,郁春潮,孙利辉. 单通道与多通道多极格子孤子及其动力学行为[J]. 激光与光电子学进展, 2019, 56(2): 020602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF