首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:21702--1)

基于卷积神经网络的高光谱遥感地物多分类识别

Multi-Classification and Recognition of Hyperspectral Remote Sensing Objects Based on Convolutional Neural Network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在进行遥感图像多分类识别时, 针对使用传统方法遇到的分类模型特征提取困难、分类精度不理想、分类种类少等问题, 研究了卷积神经网络(CNN)模型在高光谱遥感地物多分类识别中的可行性及不同CNN 模型对高光谱遥感地物多分类的识别效果。从ISPRS(International Society for Photogrammetry and Remote Sensing)提供的Vaihingen及Google Earth中采集数据,制作了包含6类地物的数据集一。在此基础上增加10类地物制作数据集二, 再增14类地物制作数据集三。在预处理图像数据之后, 通过设置神经网络结构、调整模型参数、对比神经网络模型等, 上述3类数据集的地物分类识别率均达到95%以上。通过分析不同CNN模型对高光谱遥感地物多分类识别效果的影响, 证实了CNN模型在高光谱遥感地物多分类识别应用的可行性且具有较高的识别率。实验结果为CNN模型在高光谱遥感地物多分类识别中的应用提供了一定的参考。

Abstract

Aiming at the problems of difficult feature extraction, poor classification accuracy, and less classification types in the remote sensing image multi-classification by the conventional methods, the feasibility of the convolutional neural network (CNN) model and the recognition effects of different CNN models are studied in the multi-classification recognition of hyperspectral remote sensing objects. The datasets are collected from Vaihingen provided by the international society for photogrammetry and remote sensing (ISPRS) and Google Earth. After the dataset-I containing six categories of ground objects is made, the dataset-II and dataset-III are made by adding ten and fourteen categories of ground objects, respectively. Through pre-processing image data, setting up network structures, adjusting model parameters, comparing network models, and so on, the classification accuracies of the above three datasets are all above 95%. By analyzing the influences of different CNN models on the multi-classification recognition of hyperspectral remote sensing objects, the feasibility and high recognition ability of CNN model in the multi-classification recognition of hyperspectral remote sensing are confirmed. The experimental results provide a certain reference for the application of CNN model in the multi-classification recognition of hyperspectral remote sensing objects.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751

DOI:10.3788/lop56.021702

所属栏目:医用光学与生物技术

基金项目:光电信息控制和安全技术重点实验室基金项目资助(614210701041705)

收稿日期:2018-07-17

修改稿日期:2018-07-19

网络出版日期:2018-08-02

作者单位    点击查看

闫苗:河北工业大学电子信息工程学院, 天津 300401中国电子科技集团公司第五十三研究所光电信息控制和安全技术重点实验室, 天津 300308
赵红东:河北工业大学电子信息工程学院, 天津 300401
李宇海:中国电子科技集团公司第五十三研究所光电信息控制和安全技术重点实验室, 天津 300308
张洁:河北工业大学电子信息工程学院, 天津 300401中国电子科技集团公司第五十三研究所光电信息控制和安全技术重点实验室, 天津 300308
赵泽通:河北工业大学电子信息工程学院, 天津 300401中国电子科技集团公司第五十三研究所光电信息控制和安全技术重点实验室, 天津 300308

联系人作者:赵红东(zhaohd@hebut.edu.cn)

【1】He S L, Xu J H, Zhang S Y. Land use classification of object-oriented multi-scale by UAV image[J]. Remote Sensing for Land & Resources, 2013, 25(2): 107-112.
何少林, 徐京华, 张帅毅. 面向对象的多尺度无人机影像土地利用信息提取[J]. 国土资源遥感, 2013, 25(2): 107-112.

【2】Mekhalfi M L, Melgani F, Bazi Y, et al. Land-use classification with compressive sensing multifeature fusion[J]. IEEE Geoscience Remote Sensing Letters, 2015, 12(10): 2155-2159.

【3】Cheriyadat A M. Unsupervised feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 439-451.

【4】Cheng G, Han J W, Lu X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883.

【5】Deng X Q, Zhu Q B, Huang M. Variety discrimination for single rice seed by integrating spectral, texture and morphological features based on hyperspectral image[J]. Laser & Optoelectronics Progress, 2015, 52(2): 021001.
邓小琴, 朱启兵, 黄敏. 融合光谱、纹理及形态特征的水稻种子品种高光谱图像单粒鉴别[J]. 激光与光电子学进展, 2015, 52(2): 021001.

【6】Ye Z, Bai L, Nian Y J. Hyperspectral image classification algorithm based on Gabor feature and locality-preserving dimensionality reduction[J]. Acta Optica Sinica, 2016, 36(10): 1028003.
叶珍, 白璘, 粘永健. 基于Gabor特征与局部保护降维的高光谱图像分类算法[J]. 光学学报, 2016, 36(10): 1028003.

【7】Wang J N. Hyperspectral image classification based on joint sparse representation and morphological feature extraction[J]. Laser & Optoelectronics Progress, 2016, 53(8): 082801.
王佳宁. 基于联合稀疏表示与形态特征提取的高光谱图像分类[J]. 激光与光电子学进展, 2016, 53(8): 082801.

【8】Chen Y, Fan R S, Wang J X, et al. Cloud detection of ZY-3 satellite remote sensing images based on deep learning[J]. Acta Optica Sinica, 2018, 38(1): 0128005.
陈洋, 范荣双, 王竞雪, 等.基于深度学习的资源三号卫星遥感影像云检测方法[J]. 光学学报, 2018, 38(1): 0128005.

【9】Liu D W, Han L, Han X Y. High spatial resolutionremote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.
刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 0428001.

【10】Yang J C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2009, Miami, FL, USA. New York: IEEE, 2009, 8: 20-25.

【11】Hinton G E, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.

【12】Liu N, Wan L H, Zhang Y, et al. Exploiting convolutional neural networks with deeply local description for remote sensing image classification[J]. IEEE Access, 2018, 6: 11215-11228.

【13】Yu S Q, Jia S, Xu C Y. Convolutional neural networks for hyperspectral image classification[J]. Neurocomputing, 2017, 219: 88-98.

【14】Fu X L, Li L P, Mao K B, et al. Remote sensing image classification based on CNN model[J]. Chinese High Technology Letters, 2017, 27(3): 203-212.
付秀丽, 黎玲萍, 毛克彪, 等. 基于卷积神经网络模型的遥感图像分类[J]. 高技术通讯, 2017, 27(3): 203-212.

【15】Yang J, Song C F, Song W A,et al. Remote sensing image classification based on fuzzy RBF neural network based on genetic algorithm[J]. Journal of Chinese Computer Systems, 2018, 39(3): 621-624.
杨剑, 宋超峰, 宋文爱, 等. 基于遗传算法的模糊RBF神经网络对遥感图像分类[J]. 小型微型计算机系统, 2018, 39(3): 621-624.

【16】Gulnaz A, Hurxida J, Sun T L, et al. An approach based on ELM-SVM for remote sensing image classification[J]. Journal of Northeast Normal University (Natural Science Edition), 2017, 49(1): 53-61.
古丽娜孜·艾力木江, 乎西旦·居马洪, 孙铁利, 等. 一种基于ELM-SVM的遥感图像分类方法[J]. 东北师大学报(自然科学版), 2017, 49(1): 53-61.

【17】Wu Y Q, Tao F X, Cao Z Q. Remote sensing image classification based onLog-Gabor wavelet and Krawtchouk moments[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 861-867.
吴一全, 陶飞翔, 曹照清. 基于Log-Gabor小波和Krawtchouk矩的遥感图像分类[J]. 武汉大学学报(信息科学版), 2016, 41(7): 861-867.

【18】Li L,Zhang Y, Li S, et al. Classification of remote sensing images based on the fusion of spatial relationship[J]. Remote Sensing for Land & Resources, 2017, 29(3): 10-16.
李亮, 张云, 李胜, 等.融合空间关系的遥感图像分类[J]. 国土资源遥感, 2017, 29(3): 10-16.

【19】Nogueira K, Penatti O A B, dos Santos J A. Towards better exploiting convolutional neural networks for remote sensing scene classification[J]. Pattern Recognition, 2017, 61: 539-556.

【20】Zhang P Z, Gong M G, Su L Z, et al. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 24-41.

引用该论文

Yan Miao,Zhao Hongdong,Li Yuhai,Zhang Jie,Zhao Zetong. Multi-Classification and Recognition of Hyperspectral Remote Sensing Objects Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021702

闫苗,赵红东,李宇海,张洁,赵泽通. 基于卷积神经网络的高光谱遥感地物多分类识别[J]. 激光与光电子学进展, 2019, 56(2): 021702

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF