首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:20501--1)

基于二维光子晶体负折射的共聚焦系统

Confocal System Based on the Negative Refraction of Two-Dimensional Photonic Crystals

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于二维光子晶体的负折射和亚波长成像特性, 提出了一种可以实现超分辨成像的共聚焦系统, 使用时域有限差分法(FDTD)仿真了共聚焦系统的聚焦和成像的过程。在焦点离光子晶体透镜下表面1.55 μm处, 横坐标X=4 μm时, 焦点半峰全宽(FWHM)为0.593λ, 小于入射波长, 此时反射光在右侧像点的FWHM达到0.496λ, 实现了超分辨成像, 并且随着焦点的右移, 像点FWHM不断减小。同时, 在针孔和焦点位置不变时共聚焦系统的轴向分辨率达到2.2λ。

Abstract

In this study, a confocal system is proposed for which super-resolution imaging can be achieved based on the negative refraction and subwavelength imaging characteristics of two-dimensional photonic crystals (PCs). Further, the focusing and imaging processes of a confocal system are simulated with the finite-difference time-domain method. When the distance from the focus to the lower surface of a PC becomes 1.55 μm and when the transverse coordinate x=4, the full width at half maximum (FWHM) of the focus becomes 0.593λ, which is less than the incident wavelength; further, the FWHM of the reflected light in the right of the image point becomes 0.496λ, which indicates that super-resolution imaging can be realized. The FWHM of the image point decreases continuously when the focus shifts to right; further, the axial resolution of the confocal system becomes 2.2λ when the pinhole and focus are fixed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH74

DOI:10.3788/lop56.020501

所属栏目:衍射与光栅

基金项目:国家自然科学基金(61177043)

收稿日期:2018-07-19

修改稿日期:2018-07-27

网络出版日期:2018-08-06

作者单位    点击查看

牛金科:上海理工大学光电信息与计算机工程学院, 上海 200093
梁斌明:上海理工大学光电信息与计算机工程学院, 上海 200093
庄松林:上海理工大学光电信息与计算机工程学院, 上海 200093
王国旭:上海理工大学光电信息与计算机工程学院, 上海 200093
雷雨:上海理工大学光电信息与计算机工程学院, 上海 200093

联系人作者:梁斌明(bmliang78@aliyun.com)

【1】Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

【2】Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

【3】Kang M, Chen J, Li S M, et al. Optical spin-dependent angular shift in structured metamaterials[J]. Optics Letters, 2011, 36(19): 3942-3944.

【4】John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

【5】Yablonovitch G, Sheng P, Yablonovitch E, et al. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2061.

【6】Su K, Wang Z M, Liu J J. Three waveguides directional coupler based on two dimensional square lattice photonic crystal[J]. Acta optica Sinica, 2016, 36(3): 0323002.
苏康, 王梓名, 刘建军. 二维正方晶格光子晶体三光波导方向耦合器[J]. 光学学报, 2016, 36(3): 0323002.

【7】Zhang X X, Chen H M. Design and performance analysis of photonic crystal polarizing beam splitter[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011301.
张信祥, 陈鹤鸣. 光子晶体偏振分束器的设计与性能分析[J]. 激光与光电子学进展, 2017, 54(1): 011301.

【8】Ma J, Yu H H, Xiong J G, et al. Research progress of photonic crystal fiber sensors[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070006.
马健, 余海湖, 熊家国, 等. 光子晶体光纤传感器研究进展[J]. 激光与光电子学进展, 2017, 54(7): 070006.

【9】Cubukcu E, Aydin K, Ozbay E, et al. Electromagnetic waves: negative refraction by photonic crystals[J]. Nature, 2003, 423(6940): 604-605.

【10】Parimi P V, Lu W T, Vodo P, et al. Photonic crystals: imaging by flat lens using negative refraction[J]. Nature, 2003, 426(6965): 404.

【11】Liu F F, Zhu Z J, Tong Y W. Effects on imaging quality of defects in the photonic crystal with negative refraction material[J]. Acta Optica Sinica, 2015, 35(4): 0416004.
刘逢芳, 朱兆杰, 童元伟. 光子晶体负折射材料中缺陷对成像质量的影响[J]. 光学学报 2015, 35(4): 0416004.

【12】Luo C, Johnson S G, Joannopoulos J D, et al. Subwavelength imaging in photonic crystals[J]. Physical Review B, 2003, 68(4): 045115.

【13】Petráň M, Hadravsk M, Egger M D, et al. Tandem-scanning reflected light microscope[J]. Journal of the Optical Society of America, 1968, 58(5): 661-664.

【14】Kuang C F, Li S, Liu W, et al. Breaking the diffraction barrier using fluorescence emission difference microscopy[J]. Scientific Reports, 2013, 3: 1441.

【15】Willig KI, Harke B, Medda R, et al. STED microscopy with continuous wave beams[J]. Nature Methods, 2007, 4(11): 915-918.

【16】Zhao G, Kabir M M, Toussaint K C, et al. Saturated absorption competition microscopy[J]. Optica, 2017, 4(6): 633-636.

【17】Rong Z H, Li S, Kuang C F, et al. Real-time super-resolution imaging by high-speed fluorescence emission difference microscopy[J]. Journal of Modern Optics, 2014, 61(16): 1364-1371.

【18】Wilson T. Resolution and optical sectioning in the confocal microscope[J]. Journal of Microscopy, 2011, 244(2): 113-121.

【19】Sun T X, Liu H H, Liu Z G, et al. Application of confocal micro X-ray fluorescence technique based on polycapillary X-ray lens in analyzing medicine with capsule[J]. Acta Optica Sinica, 2014, 34(1): 0134001.
孙天希, 刘鹤贺, 刘志国, 等. 毛细管X光透镜共聚焦微束X射线荧光技术在胶囊类药品分析中的应用[J]. 光学学报, 2014, 34(1): 0134001.

【20】Borlinghaus R T, Kappel C. HyVolution: the smart path to confocal super-resolution[J]. Nature Methods, 2016, 13(3): 276.

引用该论文

Niu Jinke,Liang Binming,Zhuang Songlin,Wang Guoxu,Lei Yu. Confocal System Based on the Negative Refraction of Two-Dimensional Photonic Crystals[J]. Laser & Optoelectronics Progress, 2019, 56(2): 020501

牛金科,梁斌明,庄松林,王国旭,雷雨. 基于二维光子晶体负折射的共聚焦系统[J]. 激光与光电子学进展, 2019, 56(2): 020501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF