首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:20601--1)

高阶轨道角动量模场传输光纤的设计研究

Design and Analysis of a Transmission Fiber with High-Order Orbital Angular Momentum Mode

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对纤芯折射率分布为倒抛物线型的光纤结构, 在光纤的纤芯与包层之间增加低折射率层, 构成了改进的新型光纤。该光纤可容纳高阶轨道角动量(OAM)模场, 通过归一化截止频率的计算得到光纤可支持9种模式, 最高可容纳拓扑荷数为3的OAM模式。计算得到简并模式LP11与LP21的有效折射率差均可达到2.1×10-4, 简并模式LP31之间有效折射率差可达到10-3, 能够有效地使矢量模式简并分离, 对越高阶的模式简并分离效果越好。最后分析了此光纤结构低折射率层的分布对于光纤可容纳涡旋光束模式数目的影响。

Abstract

For a fiber having an inverted parabolic distribution as its refractive index distribution, adding a low refractive index layer between the core and the fiber cladding can create an improved novel fiber. This novel fiber can accommodate a high-order orbital angular momentum (OAM) mode field. Calculation of the normalized cutoff frequency showed that the novel fiber can support 9 fiber modes and accommodate the OAM modes with a topological charge of 3. According to the calculations, the effective refractive index differences for the degenerate modes of LP11 and LP21 both reach 2.1×10-4, and the effective refractive index difference between the degenerate modes of LP31 reaches 10-3. The vector modes were effectively decoupled and the degenerative separation effect of the higher order modes was improved. Finally, the influence of the low refractive index layer′s distribution on the optical fiber transmittable vortex light mode was analyzed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.11

DOI:10.3788/lop56.020601

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61377080, 60977054)、陕西省重点产业链项目(2017ZDCXL-GY-06-01)

收稿日期:2018-07-19

修改稿日期:2018-07-24

网络出版日期:2018-08-02

作者单位    点击查看

柯熙政:西安理工大学自动化与信息工程学院, 陕西 西安 710048
陈云:西安理工大学自动化与信息工程学院, 陕西 西安 710048
张颖:西安理工大学自动化与信息工程学院, 陕西 西安 710048

联系人作者:陈云(839140582@qq.com)

【1】Wu Y X, Wang Z Y, Chen S B, et al. Cascade conical refraction for annular pumping of a vortex Nd∶YAG laser and selective excitation of low- and high-order Laguerre-Gaussian modes[J]. Laser Physics Letters, 2018, 15(5): 055804.

【2】Li X Z, Meng Y, Li H H, et al. Generation of perfect vortex beams and space free-control technology[J]. Acta Optica Sinica, 2016, 36(10): 1026018.
李新忠, 孟莹, 李贺贺, 等. 完美涡旋光束的产生及其空间自由调控技术[J]. 光学学报, 2016, 36(10): 1026018.

【3】Mohammed W S, Pitchumani M, Mehta A A, et al. Selective excitation of the LP11 mode in step index fiber using a phase mask[J]. Optical Engineering, 2006, 45(7): 074602.

【4】Li S H, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics Letters, 2015, 40(18): 4376-4379.

【5】Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456

【6】Lü H, Ke X Z. Research on the beam with orbital angular momentum used in encoding and decoding of optical communication[J]. Acta Optica Sinica, 2009, 29(2): 331-335.
吕宏, 柯熙政. 具轨道角动量光束用于光通信编码及解码研究[J]. 光学学报, 2009, 29(2): 331-335.

【7】Ke X Z, Guo X L. Realization of optical phase information encode by using orbital angular momentum of light beam[J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 69 -76.
柯熙政, 郭新龙. 用光束轨道角动量实现相位信息编码[J]. 量子电子学报, 2015, 32(1): 69-76.

【8】Ke X Z, Xu J N. Interference and detection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2016, 43(9): 0905003.
柯熙政, 胥俊宇. 涡旋光束轨道角动量干涉及检测的研究[J]. 中国激光, 2016, 43(9): 0905003.

【9】Bozinovic N, Kristensen P, Ramachandran S. Are orbital angular momentum (OAM/Vortex) states of light long-lived in fibers?[C]∥Laser Science, October 16-20, 2011, San Jose, California United States. Washington: Optical Society of America, 2011: LWL3.

【10】Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

【11】Yan Y, Wang J, Zhang L, et al. Fiber coupler for generating orbital angular momentum mode[J]. Optics Letters, 2011, 36(21): 4269-4271.

【12】Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes[J]. Optics Letters, 2012, 37(16): 3294-3296.

【13】Yan Y, Yue Y, Huang H, et al. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs[J]. Optics Letters, 2012, 37(17): 3645-3647.

【14】Li S H, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing[J]. IEEE Photonics Journal, 2013, 5(5): 7101007.

【15】Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21): 26117-26127.

【16】Li S, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings×22 modes)[J]. Scientific Reports, 2014, 4: 3853.

【17】Huang G Y, Zhou S L, Qin Y L, et al. Modal characteristics analysis of orbital angular momentum in a modified ring fiber[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080604.
黄桂勇, 周守利, 覃亚丽, 等. 改进环光纤结构中轨道角动量模式特性分析[J]. 激光与光电子学进展, 2015, 52(8): 080604.

【18】Zhang X, Wang A, Chen R, et al. Generation and conversion of higher order optical vortices in optical fiber with helical fiber Bragg gratings[J]. Journal of Lightwave Technology, 2016, 34(10): 2413-2418.

【19】Ke X Z, Ge T. Experiment on generation of vortex light with few-mode fiber[J]. Chinese Journal of Lasers, 2017, 44(11): 1106004.
柯熙政, 葛甜. 利用少模光纤产生涡旋光的实验[J]. 中国激光, 2017, 44(11): 1106004.

【20】Zhang L X, Wei W, Zhang Z M, et al. Propagation properties of vortex beams in a ring photonic crystal fiber[J]. Acta Physica Sinica, 2017, 66(1):014205.
张羚翔, 魏薇, 张志明, 等. 环形光子晶体光纤中涡旋光的传输得行研究[J]. 物理学报, 2017, 66(1): 014205.

【21】Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 2014, 22(15):18044-18055.

【22】Wang L, Vaity P, Ung B, et al. Characterization of OAM fibers using fiber Bragg gratings[J]. Optics Express, 2014, 22(13):15653-15661.

【23】Duocastella M, Arnold C B. Bessel and annular beams for materials processing[J]. Laser and Photonics Reviews, 2012, 6(5): 607-621.

【24】Yue Y, Yan Y, Ahmed N, et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber[J]. IEEE Photonics Journal, 2012, 4(2): 535-543.

【25】Sun P J. Generation of vector vortex beams in optical fibers[D]. Harbin: Harbin University of Science and Technology, 2016: 18-22.
孙培敬. 光纤中矢量涡旋光束的产生[D]. 哈尔滨: 哈尔滨理工大学, 2016: 18-22.

【26】Zhang X, Su X F, Zhang L, et al. Analysis of orbital angular momentum modes based on high-order bessel functions in optical fiber of ring refractive index distribution[J]. Chinese Journal of Lasers, 2014, 41(12): 1205002.
张霞, 宿晓飞, 张磊, 等. 折射率环状分布光纤中基于高阶贝塞尔函数的轨道角动量模式分析[J]. 中国激光, 2014, 41(12): 1205002.

引用该论文

Ke Xizheng,Chen Yun,Zhang Ying. Design and Analysis of a Transmission Fiber with High-Order Orbital Angular Momentum Mode[J]. Laser & Optoelectronics Progress, 2019, 56(2): 020601

柯熙政,陈云,张颖. 高阶轨道角动量模场传输光纤的设计研究[J]. 激光与光电子学进展, 2019, 56(2): 020601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF