首页 > 论文 > 激光与光电子学进展 > 56卷 > 2期(pp:21603--1)

金属Ag固化过程中的空位形成研究

Vacancy Formation During Solidification of Metal Ag

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用分子动力学方法, 研究了金属Ag固液界面在固化过程中的动力学过程及缺陷俘获。结果发现, 金属Ag的界面温度存在某个特征值(T*), 生长速度在这个特征温度附近达到最大值。同时发现液体在产生晶体时缺陷以空位为主。计算结果表明, 缺陷浓度与界面温度之间存在线性关系, 缺陷浓度随着界面温度的降低而逐渐增大, 在特征温度附近发生转变。同时发现缺陷浓度与生长速度相关, 当界面温度高于特征温度(T>T*)时, 二者存在近似线性关系且与方向无关, 但当界面温度低于特征温度(T<T*)时, (100)方向和(110)方向存在着明显的各向异性, 表明缺陷俘获与生长机制转变有关。

Abstract

The kinetics and defect trapping at the solid-liquid interface of simple metal Ag during the solidification process are investigated by molecular dynamics simulation. It is found that there exists a certain characteristic value (T*) for the interfacial temperature of metal Ag at which the growth rate reaches a maximum value. Meanwhile, the vacancy defects are predominant in the solidification process of liquids. The calculation results show that there exists a linear relationship between defect concentration and interfacial temperature. The defect concentration gradually increases with the decrease of interfacial temperature, and a transition occurs near this characteristic temperature. In addition, the defect concentration is found to be dependent on growth velocity. Above the characteristic temperature (T>T*), the defect concentration almost linearly depends on the growth velocity, and both are independent on orientations. In contrast, below the characteristic temperature (T<T*), an obvious anisotropy occurs along the (100) and (110) orientations, indicating that the defect trapping is associated with the growth mechanism transition.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O469;O414.13

DOI:10.3788/lop56.021603

所属栏目:材料

基金项目:扬州大学广陵学院自然科学研究项目(ZKZD18002)、扬州大学科技创新培育基金(5009/135030009)

收稿日期:2018-07-24

修改稿日期:2018-07-25

网络出版日期:2018-08-02

作者单位    点击查看

张海燕:扬州大学广陵学院, 江苏 扬州 225000扬州大学物理科学与技术学院, 江苏 扬州 225002
汪丽春:扬州大学物理科学与技术学院, 江苏 扬州 225002

联系人作者:张海燕(zhanghy@yzu.edu.cn)

【1】Chen B, Zhu W H, Chen P, et al. Mechanism of femtosecond laser ablating CuZr amorphous alloy[J]. Laser & Optoelectronics Progress, 2015, 52(4): 041406.
陈冰, 朱卫华, 陈鹏, 等. 分子动力学模拟飞秒激光烧蚀CuZr非晶合金的机理[J]. 激光与光电子学进展, 2015, 52(4): 041406.

【2】Asta M, Beckermann C, Karma A, et al. Solidification microstructures and solid-state parallels: recent developments, future directions[J]. Acta Materialia, 2009, 57(4): 941-971.

【3】Chernov A A. Notes on interface growth kinetics 50 years after Burton, Cabrera and Frank[J]. Journal of Crystal Growth, 2004, 264(4): 499-518.

【4】Zhu C Y, Lü Z W, He W M, et al. Solid SBS media and entirely solidification of the SBS Phase-conjugation mirrors[J]. Laser & Optoelectronics Progress, 2006, 43(3): 65-68.
朱成禹, 吕志伟, 何伟明, 等. 固体SBS介质与SBS相位共轭镜的全固化[J].激光与光电子学进展, 2006, 43(3): 65-68.

【5】Buta D, Asta M, Hoyt J J. Kinetic coefficient of steps at the Si(111) crystal-melt interface from molecular dynamics simulations[J]. The Journal of Chemical Physics, 2007, 127(7): 074703.

【6】Maltsev I, Mirzoev A, Danilov D, et al. Atomistic and mesoscale simulations of free solidification in comparison[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17(5): 055006.

【7】Gulam Razul M S, Hendry J G, Kusalik P G. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations[J]. The Journal of Chemical Physics, 2005, 123(20): 204722.

【8】Broughton J Q, Gilmer G H, Jackson K A. Crystallization rates of a Lennard-Jones liquid[J]. Physical Review Letters, 1982, 49(20): 1496-1500.

【9】Geysermans P, Gorse D, Pontikis V. Molecular dynamics study of the solid-liquid interface[J]. The Journal of Chemical Physics, 2000, 113(15): 6382-6389.

【10】Yang Y, Olmsted D L, Asta M, et al. Atomistic characterization of the chemically heterogeneous Al-Pb solid-liquid interface[J]. Acta Materialia, 2012, 60(12): 4960-4971.

【11】Yang G Q, Li J F, Shi Q W, et al. Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: a molecular dynamics study[J]. Computational Materials Science, 2014, 86: 64-72.

【12】Hoyt J J, Asta M. Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag[J]. Physical Review B, 2002, 65(21): 214106.

【13】Sun D Y, Asta M, Hoyt J J. Crystal-melt interfacial free energies and mobilities in FCC and BCC Fe[J]. Physical Review B, 2004, 69(17): 174103.

【14】Ashkenazy Y, Averback R S. Atomic mechanisms controlling crystallization behaviour in metals at deep under coolings[J]. Europhysics Letters, 2007, 79(2): 26005.

【15】Buta D, Asta M, Hoyt J J. Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface[J]. Physical Review E, 2008, 78(3): 031605.

【16】Piaggi P M, Parrinello M. Entropy based fingerprint for local crystalline order[J]. Journal of Chemical Physics, 2017, 147(11): 114112.

【17】Beckera C A, Asta M, Hoyt J J, et al. Equilibrium adsorption at crystal-melt interfaces in Lennard-Jones alloys[J]. The Journal of Chemical Physics, 2006, 124(16): 164708.

【18】Kerrache A, Horbach J, Binder K. Molecular-dynamics computer simulation of crystal growth and melting in Al50Ni50 [J]. Europhysics Letters, 2008, 81(5): 58001.

【19】Qi C, Li J F, Xu B, et al. Atomistic characterization of solid-liquid interfaces in the Cu-Ni binary alloy system[J]. Computational Materials Science, 2016, 125: 72-81.

【20】Zhou L L, Yang R Y, Tian Z A, et al. Molecular dynamics simulation on structural evolution during crystallization of rapidly super-cooled Cu50Ni50 alloy[J]. Journal of Alloys and Compounds, 2017, 690: 633-639.

【21】Zheng X Q, Yang Y, Gao Y F, et al. Disorder trapping during crystallization of the B2-ordered NiAl compound[J]. Physical Review E, 2012, 85(4):041601.

【22】Kramer M J, Mendelev M I, Napolitano R E. In situ observation of antisite defect formation during crystal growth[J]. Physical Review Letters, 2010, 105(24): 245501.

【23】Yang Y, Humadi H, Buta D, et al. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts[J]. Physical Review Letters, 2011, 107(2): 025505.

【24】Frenkel J. Kinetic theory of liquids[M]. New York: Dover Publications, 1955.

【25】Wilson H W. Reviews-On the velocity of solidification and viscosity of supercooled liquids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1900, 50(303): 238-250.

【26】Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.

【27】Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.

【28】Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697.

【29】Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190.

【30】Parinello M, Rahman A. Crystal structure and pair potentials: a molecular-dynamics study[J]. Physical Review Letters, 1980, 45(14): 1196-1199.

【31】Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B, 1986, 33(12): 7983-7991.

【32】Davidchack R L, Laird B B. Crystal structure and interaction dependence of the crystal-melt interfacial free energy[J]. Physical Review Letters, 2005, 94(8): 086102.

【33】Monk J, Yang Y, Mendelev M I, et al. Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015004.

【34】Mendelev M I, Rahman M J, Hoyt J J, et al. Molecular-dynamics study of solid-liquid interface migration in FCC metals[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(7): 074002.

【35】Sun D Y, Asta M, Hoyt J J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations[J]. Physical Review B, 2004, 69(2): 024108.

【36】Ashkenazy Y, Averback R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals[J]. Acta Materialia, 2010, 58(2): 524-530.

【37】Gao Y F, Yang Y, Sun D Y, et al. Molecular dynamics simulations of the crystal-melt interface mobility in HCP Mg and BCC Fe[J]. Journal of Crystal Growth, 2010, 312(21): 3238-3242.

引用该论文

Zhang Haiyan,Wang Lichun. Vacancy Formation During Solidification of Metal Ag[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021603

张海燕,汪丽春. 金属Ag固化过程中的空位形成研究[J]. 激光与光电子学进展, 2019, 56(2): 021603

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF