首页 > 论文 > 中国激光 > 46卷 > 1期(pp:110002--1)

基于激光雷达对WRF模式模拟边界层高度的评估

Evaluation of Boundary Layer Height Simulated by WRF Mode Based on Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

2015年12月份重污染频发的北京市先后启动两次大气重污染红色预警。本研究根据中科院大气物理研究所铁塔分部激光雷达的立体探测数据, 采用梯度法反演北京市区大气边界层高度, 并对中尺度数值模式WRF的模拟结果进行评估。结果表明, 虽然两种方法的结果具有较好的一致性, 但是极值并没有很好地吻合。激光雷达反演边界层高度日变化与WRF模拟结果的相关性达到0.76, 均方根误差为163 m, 平均偏差为-61 m。同时发现在清洁天气下, WRF模拟的准确性要高于污染天气下的模拟结果。此外地面观测的PM2.5质量浓度与激光雷达反演的大气边界层高度相关性达到-0.85。

Abstract

Severe haze occurred in Beijing frequently during December 2015, which had launched two red alerts for atmospheric heavy pollution. In this paper, according to the lidar stereo data at the tower of the institute of atmospheric physics of the Chinese academy of sciences, the atomspheric boundary layer height of Beijing city is retrieved by gradient method, and the simulation results of the mesoscale numerical WRF model are evaluated. The results show that the two methods have good consistency, but the extreme values are not very consistent. The correlation between lidar inversion of daily variation of boundary layer height and WRF simulation results reaches 0.76, the root mean square error is 163 m, and the average deviation is -61 m. Meanwhile, the accuracy of WRF simulation in clean weather is higher than that in polluted weather. In addition, the correlation between the observed PM2.5 mass concentration and the ABLH of lidar inversion is -0.85.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P412

DOI:10.3788/cjl201946.0110002

所属栏目:遥感与传感器

基金项目:国家重点研发计划(2016YFC0200401,2017YFC0213002)、大气重污染成因与治理攻关项目(DDGG0102)、国家重点基础研究发展规划项目(2014CB447900)、国家自然科学基金项目(41605020)

收稿日期:2018-06-21

修改稿日期:2018-08-30

网络出版日期:2018-09-25

作者单位    点击查看

项衍:安徽大学物质科学与信息技术研究院, 安徽 合肥 230601中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
张天舒:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
刘建国:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
吕立慧:安徽大学物质科学与信息技术研究院, 安徽 合肥 230601中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031

联系人作者:项衍(yxiang@ahu.edu.cn)

【1】Jiang Y C, Zhao T L, Wang H, et al. Analysis on atmospheric boundary layer and regional transport during PM2.5 pollution episodes in Fuzhou[J]. China Environmental Science, 2015, 35(2): 347-355.
蒋永成, 赵天良, 王宏, 等. 福州市PM2.5污染过程中大气边界层和区域传输研究[J]. 中国环境科学, 2015, 35(2): 347-355.

【2】Asimakopoulos D N, Helmis C G, Michopoulos J. Evaluation of sodar methods for the determination of the atmospheric boundary layer mixing height[J]. Meteorology and Atmospheric Physics, 2004, 85(1/2/3): 85-92.

【3】Teng J Y, Qin K, Wang Y J, et al. Study on automatic identification of aerosols boundary layer height with local optimum model based on lidar data[J]. Spectroscopy and Spectral Analysis, 2017,37(2): 361-367.
滕继峣, 秦凯, 汪云甲, 等. 基于激光雷达观测的大气边界层自动识别局部最优点算法[J]. 光谱学与光谱分析, 2017, 37(2): 361-367.

【4】Zhang W C, Zhang Y, Lü Y, et al. Observation of atmospheric boundary layer height by ground-based LiDAR during haze days[J]. Journal of Remote Sensing, 2013, 17(4): 981-992.
张婉春, 张莹, 吕阳, 等. 利用激光雷达探测灰霾天气大气边界层高度[J]. 遥感学报, 2013, 17(4): 981-992.

【5】Lü L H, Liu W Q, Zhang T S, et al. Characteristics of boundary layer height in Jing-Jin-Ji area based on lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010101.
吕立慧, 刘文清, 张天舒, 等. 基于激光雷达的京津冀地区大气边界层高度特征研究[J]. 激光与光电子学进展, 2017, 54(1): 010101.

【6】Wang L, Xie C B, Han Y, et al. Comparison of retrieval methods of planetary boundary layer height from lidar data[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(4): 241-247.
王琳, 谢晨波, 韩永, 等. 测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012, 7(4): 241-247.

【7】Chen J, Wang J J. Diurnal cycles of the boundary layer structure simulated by WRF in Beijing[J]. Journal of Applied Meteorological Science, 2006, 17(4): 403-411.
陈炯, 王建捷. 北京地区夏季边界层结构日变化的高分辨模拟对比[J]. 应用气象学报, 2006, 17(4): 403-411.

【8】Zhao S Q, Zhang L, Wang Z T, et al. Boundary layer height estimate in summer over the Lanzhou suburb in the Yuzhong area using lidar measurement and numerical model[J]. Climatic and Environmental Research, 2012, 17(5): 523-531.
赵世强, 张镭, 王治厅, 等. 利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J]. 气候与环境研究, 2012, 17(5): 523-531.

【9】He X H. The simulation of PM2.5 pollution in autumn over Beijing, Tianjin and Hebei region[D]. Beijing: Chinese Academy of Meteorological Sciences, 2015.
何心河. 2014年秋季京津冀地区PM2.5污染过程的数值模拟研究[D]. 北京: 中国气象科学研究院, 2015.

【10】Wang L X, Wang Y, Lai X L, et al. Study on the simulation of boundary layer height in Lanzhou in winter using WRF model with different boundary layer parameterization schemes[J]. Plateau Meteorology, 2017, 36(1): 162-172.
王丽霞, 王颖, 赖锡柳, 等. WRF模式不同边界层参数化方案模拟兰州冬季边界层高度的研究[J]. 高原气象, 2017, 36(1): 162-172.

【11】Zhu Y H. Environmental science hot spots in 2015[J]. Science & Technology Review, 2016, 34(1): 99-113.
祝叶华. 2015年环境科学热点回眸[J]. 科技导报, 2016, 34(1): 99-113.

【12】Lv L, Liu W Q, Zhang T S, et al. Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique[J]. Atmospheric Environment, 2017, 164: 360-369.

【13】Chen Z Y, Zhang J S, Zhang T S, et al. Haze observations by simultaneous lidar and WPS in Beijing before and during APEC, 2014[J]. Science China Chemistry, 2015, 58(9): 1385-1392.

【14】Luo Y, He Y, Geng L M, et al. Long-distance laser ranging lidar based on photon counting technology[J]. Chinese Journal of Lasers, 2016, 43(5): 0514001.
罗远, 贺岩, 耿立明, 等. 基于光子计数技术的远程测距激光雷达[J]. 中国激光, 2016, 43(5): 0514001.

【15】Liu C, Fan G Q, Lv L H, et al. Observation of the boundary layer structure and aerosol properties over Yangtze River Zone using mobile shipboard lidar[C]∥Optics and Photonics for Energy and the Enviroment 2016, November 14-17, 2016, Leipzig Germany. Washington: OSA, 2016: JW4A.28.

【16】Wang Z, Cao X, Zhang L, et al. Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation[J]. Atmospheric Measurement Techniques, 2012, 5(8): 1965-1972.

【17】Wang L, Xie C B, Wang Z Z, et al. Application of gradient method to detect height distribution of atmospheric boundary layer with lidar[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(3): 161-167.
王琳, 谢晨波, 王珍珠, 等. 激光雷达探测大气边界层高度分布的梯度法应用研究[J]. 大气与环境光学学报, 2012, 7(3): 161-167.

【18】Zhang W, Wu S H, Song X Q, et al. Atmospheric boundary layer detected by a Fraunhofer lidar over Qingdao suburb[J]. Acta Optica Sinica, 2013, 33(6): 0628002.
张薇, 吴松华, 宋小全, 等. 夫琅禾费暗线激光雷达探测青岛市郊大气边界层[J]. 光学学报, 2013, 33(6): 0628002.

【19】Bo G Y, Liu D, Wang B X, et al. Two-wavelength polarization airborne lidar for observation of aerosol and cloud[J]. Chinese Journal of Lasers, 2012, 39(10): 1014002.
伯广宇, 刘东, 王邦新, 等. 探测云和气溶胶的机载双波长偏振激光雷达[J]. 中国激光, 2012, 39(10): 1014002.

【20】Xiang Y, Ye Q H, Liu J G, et al. Retrieve of planetary boundary layer height based on image edge detection[J]. Chinese Journal of Lasers, 2016, 43(7): 0704003.
项衍, 叶擎昊, 刘建国, 等. 基于图像边缘检测法反演大气边界层高度[J]. 中国激光, 2016, 43(7): 0704003.

【21】Li X, Quan J N, Wang F, et al. Evaluation of the method for planetary boundary layer height retrieval by lidar and its application in Beijing[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(2): 435-446.
李霞, 权建农, 王飞, 等. 激光雷达反演边界层高度方法评估及其在北京的应用[J]. 大气科学, 2018, 42(2): 435-446.

【22】Pang Y, Han Z W, Zhu B, et al. A model study on distribution and evolution of atmospheric pollutants over Beijing-Tianjin-Hebei region in summertime with WRF-Chem[J]. Transactions of Atmospheric Sciences, 2013, 36(6): 674-682.
庞杨, 韩志伟, 朱彬, 等. 利用WRF-chem模拟研究京津冀地区夏季大气污染物的分布和演变[J]. 大气科学学报, 2013, 36(6): 674-682.

【23】Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22(6): 1065-1092.

【24】Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16663-16682.

【25】Ek M B. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. Journal of Geophysical Research, 2003, 108(D22): 8851.

【26】Hong S Y. A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(651): 1481-1496.

【27】Grell G A, Dévényi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14): 38-1-38-4.

【28】Bi X Y, Liu F, Wu D. Comparison of some limit for stability classification[J]. Journal of Tropical Meteorology, 2005, 21(4): 402-409.
毕雪岩, 刘烽, 吴兑. 几种大气稳定度分类标准计算方法的比较分析[J]. 热带气象学报, 2005, 21(4): 402-409.

【29】Seibert P, Beyrich F, Gryning S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1001-1027.

【30】Chai F H. China issued red alert on heavy air pollution for the first time[J]. World Environment, 2016(1): 25-26.
柴发合. 空气重污染红色预警首次启动[J]. 世界环境, 2016(1): 25-26.

引用该论文

Xiang Yan,Zhang Tianshu,Liu Jianguo,Lü Lihui. Evaluation of Boundary Layer Height Simulated by WRF Mode Based on Lidar[J]. Chinese Journal of Lasers, 2019, 46(1): 0110002

项衍,张天舒,刘建国,吕立慧. 基于激光雷达对WRF模式模拟边界层高度的评估[J]. 中国激光, 2019, 46(1): 0110002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF