首页 > 论文 > 中国激光 > 46卷 > 1期(pp:106002--1)

相干光通信系统中光束的偏振控制及控制算法研究

Polarization Control and Control Algorithm of Beams in Coherent Optical Communication System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在相干光通信系统中, 由于大气湍流的影响, 信号光的偏振态具有不确定性, 而光混频器对信号光和本振光的偏振态比较敏感。结合光混频器原理推导出信号光偏振态、中频信号和混频效率三者之间的关系, 以中频信号幅值作为反馈控制信号光偏振态以提高混频效率, 并设计一种适用于相干光通信系统的单粒子优化算法。实验结果表明, 在闭环状态下, 偏振控制系统中频信号的幅值快速增大, 混频效率提升64%左右, 中频信号幅值的波动方差减小为0.001, 实现了相干光通信系统中的偏振控制。

Abstract

In coherent optical communication system, the polarization state of the signal light is uncertain because of the influence of atmospheric turbulence, and the optical mixer is sensitive to the polarization of signal light and local oscillator light. Based on the principle of optical mixer, the relationship among the polarization state of the signal light, the intermediate frequency signal and the mixing efficiency is deduced, The amplitude of the intermediate frequency signal is used as feedback control signal to increase the mixing efficiency, and a single particle optimization algorithm for coherent optical communication systems is designed. Experimental results show that in closed loop state, the amplitude of the intermediate frequency signal increases rapidly, the mixing efficiency increases about 64%, and the fluctuation variance of amplitude of intermediate frequency signal decreases to 0.001. The polarization control in the coherent optical communication system is realized.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.12

DOI:10.3788/cjl201946.0106002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61377080, 60977054)、陕西省重点产业创新项目(2017ZDCXL-GY-06-01)

收稿日期:2018-07-04

修改稿日期:2018-08-13

网络出版日期:2018-09-25

作者单位    点击查看

马兵斌:西安理工大学自动化与信息工程学院, 陕西 西安 710048
柯熙政:西安理工大学自动化与信息工程学院, 陕西 西安 710048
张颖:西安理工大学自动化与信息工程学院, 陕西 西安 710048

联系人作者:马兵斌(1287653285@qq.com)

【1】Pfau T, Hoffmann S, Adamczyk O, et al. Coherent optical communication: Towards realtime systems at 40 Gbit/s and beyond[J]. Optics Express, 2008, 16(2): 866-872.

【2】Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004.
韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004.

【3】Du X Y, Zhao D M. Changes in generalized Stokes parameters of stochastic electromagnetic beams on propagation through ABCD optical systems and in the turbulent atmosphere[J]. Optics Communications, 2008, 281(24): 5968-5972.

【4】Ghafary B, Alavinejad M. Changes in the state of polarization of partially coherent flat-topped beam in turbulent atmosphere for different source conditions[J]. Applied Physics B, 2011, 102(4): 945-952.

【5】Wang M J, Jia W G, Zhang S Y, et al. Effect of Raman gain on the state of polarization evolution in a low-birefringence fiber[J]. Acta Physica Sinica, 2015, 64(3): 034212.
王美洁, 贾维国, 张思远, 等. 低双折射光纤中拉曼增益对光偏振态的影响[J]. 物理学报, 2015, 64(3): 034212.

【6】Segura M,Vukovic N, White N, et al. Low birefringence measurement and temperature dependence in meter-long optical fibers[J]. Journal of Lightwave Technology, 2015, 33(12): 2697-2702.

【7】Waddy D S, Lu P, Chen L, et al. Fast state of polarization changes in aerial fiber under different climatic conditions[J]. IEEE Photonics Technology Letters, 2001, 13(9): 1035-1037.

【8】Noe R, Heidrich H, Hoffmann D. Endless polarization control systems for coherent optics[J]. Journal of Lightwave Technology, 1988, 6(7): 1199-1208.

【9】Ma T T, Tong S F, Nan H, et al. Effect of polarization property of signal light on mixing efficiency of space coherent detection[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020604.
马婷婷, 佟首峰, 南航, 等. 信号光偏振特性对空间相干探测混频效率的影响[J]. 激光与光电子学进展, 2017, 54(2): 020604.

【10】Walker N G, Walker G R. Polarization control for coherent communications[J]. Journal of Lightwave Technology, 1990, 8(3): 438-458.

【11】Li W W, Zhang X M, Chen K S, et al. A study for phase-shift characteristics of polarization controller based on simulated annealing algorithm[J]. Acta Optica Sinica, 2005, 25(4): 449-453.
李伟文, 章献民, 陈抗生, 等. 基于模拟退火算法的偏振控制器波片相移特性研究[J]. 光学学报, 2005, 25(4): 449-453.

【12】Zhang X G, Zheng Y, Shen Y, et al. Particle swarm optimization used as a control algorithm for adaptive PMD compensation[J]. IEEE Photonics Technology Letters, 2005, 17(1): 85-87.

【13】Mamdoohi G, Esmailian A, Abas A F, et al. Realization of microcontroller-based polarization control system with genetic algorithm[C]∥2009 IEEE 9th Malaysia International Conference on Communications (MICC), December, 15-17, 2009, Kuala Lumpur, Malaysia. New York: IEEE, 2009: 774-779.

【14】Huang Z M, Liu C L, Li J F, et al. Fiber polarization control based on a fast locating algorithm[J]. Applied Optics, 2013, 52(27): 6663-6668.

【15】Pikaar T, van Bochove K, van Rooyen A, et al. Nondeterministic endless control system for active polarization control[J]. Journal of Lightwave Technology, 1989, 7(12): 1982-1987.

【16】Zhang X G, Duan G Y, Xi L X. Research on least number of degrees of freedom for transformation among arbitrary state of polarizations[J]. Acta Optica Sinica, 2009, 29(5): 1173-1176.
张晓光, 段高燕, 席丽霞. 偏振控制器完成任意偏振态变化的最小自由度研究[J]. 光学学报, 2009, 29(5): 1173-1176.

【17】Smith A M. Single-mode fibre pressure sensitivity[J]. Electronics Letters, 1980, 16(20): 773.

【18】Zhang Q Y, Zhu Y, Su Y, et al. Research on the polar blind zone of the fiber squeezer polarization controller[J]. Acta Optica Sinica, 2013, 33(5): 0506001.
张启业, 朱勇, 苏洋, 等. 光纤挤压型偏振控制器的“极地盲区”问题研究[J]. 光学学报, 2013, 33(5): 0506001.

引用该论文

Ma Bingbin,Ke Xizheng,Zhang Ying. Polarization Control and Control Algorithm of Beams in Coherent Optical Communication System[J]. Chinese Journal of Lasers, 2019, 46(1): 0106002

马兵斌,柯熙政,张颖. 相干光通信系统中光束的偏振控制及控制算法研究[J]. 中国激光, 2019, 46(1): 0106002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF