首页 > 论文 > 中国激光 > 46卷 > 1期(pp:111001--1)

脉冲激光诱导碳等离子体的特性

Characteristics of Carbon Plasma Induced by Pulsed Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了研究不同空气压力条件下碳等离子体的动力学特性, 采用发射光谱法对碳等离子体进行诊断。采用1064 nm Nd∶YAG激光器烧蚀碳靶, 测得早期的发射光谱为连续谱, 此时使用黑体辐射公式拟合并推算碳等离子体的电子温度; 当线状谱出现后, 采用玻尔兹曼作图法计算电子温度, 并观察电子温度和电子密度随延时的演化趋势, 以及空气压力对演化的影响。结果表明:不同空气压力条件下, 电子温度和电子密度随延时的变化趋势一致; 随着空气压力增大, 等离子体受到的限制更大, 粒子间的碰撞增加, 导致电子温度和电子密度随之增大; 在0.01 Pa压力下沉积得到了石墨烯薄膜。

Abstract

In order to study the kinetics of carbon plasma under different air pressure conditions, the carbon plasma is diagnosed by optical emission spectroscopy. The carbon target is ablated with a 1064 nm Nd∶YAG laser. The early emission spectrum is continuous spectrum, and the electron temperature of the carbon plasma is estimated by using the black body radiation formula. When the line spectrum appears, the electron temperature is calculated by Boltzmann mapping method, and the evolutions of electron temperature and density with time and the influence of different pressures on the evolutions are observed. The results show that the changes of the temperature and density of electrons are consistent with time under different air pressure conditions. And as the gas pressure increases, the plasma is limited. As the collision between particles increases, the electron temperature and electron density increase. Graphene films are deposited at pressure of 0.01 Pa.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3788/cjl201946.0111001

所属栏目:光谱学

基金项目:中央高校基本科研业务费资助项目(HUST2016YXMS028)

收稿日期:2018-07-16

修改稿日期:2018-08-16

网络出版日期:2018-08-28

作者单位    点击查看

周素素:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
王新兵:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
左都罗:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074

联系人作者:王新兵(xbwang@hust.edu.cn)

【1】Guo Y L, Wang S Y, Wang X B, et al. Pulsed laser deposition of diamond-like carbon films[J]. Laser & Optoelectronics Progress, 2008, 45(3): 32-37.
郭延龙, 王淑云, 王小兵, 等. 脉冲激光沉积类金刚石膜技术[J]. 激光与光电子学进展, 2008, 45(3): 32-37.

【2】Wagal S S, Juengerman E M, Collins C B. Diamond-like carbon films prepared with a laser ion source[J]. Applied Physics Letters, 1988, 53(3): 187-188.

【3】Voevodin A A, Laube S J P, Walck S D, et al. Pulsed laser deposition of diamond-like amorphous carbon films from graphite and polycarbonate targets[J]. Journal of Applied Physics, 1995, 78(6): 4123-4130.

【4】van Orden A, Saykally R J. Small carbon clusters: spectroscopy, structure, and energetics[J]. Chemical Reviews, 1998, 98(6): 2313-2357.

【5】Abhilasha, Thareja R K. Optical emission studies of molecular carbon (C2)[J]. Physics Letters A, 1993, 184(1): 99-103.

【6】Al-Shboul K F, Harilal S S, Hassanein A, et al. Dynamics of C2 formation in laser-produced carbon plasma in helium environment[J]. Journal of Applied Physics, 2011, 109(5): 053302.

【7】Al-Shboul K F, Harilal S S, Hassanein A. Gas dynamic effects on formation of carbon dimers in laser-produced plasmas[J]. Applied Physics Letters, 2011, 99(13): 131506.

【8】Al-Shboul K F, Harilal S S, Hassanein A. Spatio-temporal mapping of ablated species in ultrafast laser-produced graphite plasmas[J]. Applied Physics Letters, 2012, 100(22): 221106.

【9】Harilal S S, Issac R C, Bindhu C V, et al. Emission characteristics and dynamics of C2 from laser produced graphite plasma[J]. Journal of Applied Physics, 1997, 81(8): 3637-3643.

【10】Chaudhary K, Rosalan S, Aziz M S, et al. Laser-induced graphite plasma kinetic spectroscopy under different ambient pressures[J]. Chinese Physics Letters, 2015, 32(6): 069901.

【11】Park H S, Nam S H, Park S M. Time-resolved optical emission studies on the laser ablation of a graphite target: the effects of ambient gases[J]. Journal of Applied Physics, 2005, 97(11): 113103.

【12】Haider Z, Chaudhary K, Roslan S, et al. Diagnostics of laser induced graphite plasma under various pressures of air, helium and argon[J]. 2016, 78(3): 321-326.

【13】Ruiz H M, Guzmán F, Favre M, et al. Time- and space-resolved spectroscopic characterization of a laser carbon plasma plume in an argon background[J]. Plasma Sources Science and Technology, 2012, 21(3): 034014.

【14】Zou J L, Xiao R S, Huang T, et al. Plume temperature diagnosis with the continuous spectrum and Wien′s displacement law during high power fiber laser welding[J]. Laser Physics, 2014, 24(10): 106007.

【15】Sakka T, Iwanaga S, Ogata Y H, et al. Laser ablation at solid–liquid interfaces: an approach from optical emission spectra[J]. Journal of Chemical Physics, 2000, 112(19): 8645-8653.

【16】Griem H R, Peach G. Spectral line broadening by plasmas[J]. Physics Today, 1975, 28(2): 61-62.

【17】Lan H, Wang X B, Zuo D L. Time-resolved optical emission spectroscopy diagnosis of CO2 Laser-produced SnO2 plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906.

【18】Harilal S S, Bindhu C V, Issac R C, et al. Electron density and temperature measurements in a laser produced carbon plasma[J]. Journal of Applied Physics, 1997, 82(5): 2140-2146.

【19】Ding J J. Optical emission studies of a plume produced by laser ablation of a graphite target in air[D]. Jilin: Jilin University of China, 2006: 23-29.
丁建军. 空气中激光烧蚀石墨等离子体光谱研究[D]. 吉林: 吉林大学, 2006: 23-29.

【20】Song Y Z, Li L, Zhang Y H. Effects of gas pressure on the emission characteristics of aluminum plasma ablated with laser[J]. Journal of Atomic and Molecular Physics, 2000, 17(2): 221-227.
宋一中, 李亮, 张延惠. 气压对激光诱导Al等离子体特征的影响[J]. 原子与分子物理学报, 2000, 17(2): 221-227.

【21】Koh A T T, Foong Y M, Chua D H C. Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition[J]. Diamond and Related Materials, 2012, 25: 98-102.

引用该论文

Zhou Susu,Wang Xinbing,Zuo Duoluo. Characteristics of Carbon Plasma Induced by Pulsed Laser[J]. Chinese Journal of Lasers, 2019, 46(1): 0111001

周素素,王新兵,左都罗. 脉冲激光诱导碳等离子体的特性[J]. 中国激光, 2019, 46(1): 0111001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF