首页 > 论文 > 中国激光 > 46卷 > 1期(pp:102003--1)

激光冲击强化对304不锈钢疲劳寿命的影响

Effects of Laser Shock Processing on Fatigue Life of 304 Stainless Steel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用波长为1064 nm、脉冲宽度约为10 ns的激光束对304不锈钢进行双面冲击强化处理(LSP), 利用三维形貌仪观察LSP试样的表面形貌, 采用X射线应力仪测量试样表面的残余应力; 采用伺服液压疲劳试验机对试样进行疲劳试验, 以得到疲劳裂纹扩展速率曲线; 采用扫描电子显微镜观察试样裂纹扩展不同阶段的断口形貌。结果表明:激光冲击强化处理可使试样表面产生最大变形量约为25 μm的塑性变形, 形成最大值为-218 MPa的残余压应力, 并可使裂纹源向试样内部转移; 激光冲击强化能显著降低冲击区域处的裂纹扩展速率。基于疲劳裂纹扩展速率曲线再次验证了激光冲击处理可显著提高304不锈钢的抗疲劳性能。

Abstract

The 304 stainless steel plates are double-sided shocked by laser beam with a wavelength of 1064 nm and the pulse width of 10 ns, the surface morphology of sample treated by laser shock processing (LSP) is observed by a three-dimensional profilometer, and the residual stress of the specimen surface is measured by an X-ray diffractometer, respectively. And a servo-hydraulic fatigue test machine is employed to implement the fatigue experiments on samples without and with LSP to obtain the fatigue crack growth rate curves. In addition, a scanning electron microscope (SEM) is applied to detect the fracture morphology at different crack growth stages. The experimental results indicate that LSP can not only cause plastic deformation to a maximum value of 25 μm and form compressive residual stress with a maximum value of -218 MPa on the sample surface, bust also transfer the crack source to the inside of the sample. And the crack growth rate at the shocked region is significantly retarded by LSP. The validity of utilizing LSP to improve the fatigue resistance of 304 stainless steel can be verified according to the fatigue crack growth rate curves.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201946.0102003

所属栏目:激光制造

基金项目:国家自然科学基金(51675002, 51175002)、安徽省自然科学基金(1708085ME110)、安徽省高校自然科学基金(KJ2016A813)、机械工程浙江省重中之重学科开放基金(ZSTUME02A05)、安徽工业大学研究生创新研究基金(2016073)

收稿日期:2018-07-26

修改稿日期:2018-08-30

网络出版日期:2018-09-14

作者单位    点击查看

汪军:安徽工业大学机械工程学院, 安徽 马鞍山 243032
李民:安徽工业大学机械工程学院, 安徽 马鞍山 243032
汪静雪:安徽工业大学机械工程学院, 安徽 马鞍山 243032
张兴权:安徽工业大学机械工程学院, 安徽 马鞍山 243032
魏伟:安徽工业大学机械工程学院, 安徽 马鞍山 243032
戚晓利:安徽工业大学机械工程学院, 安徽 马鞍山 243032
王会廷:安徽工业大学机械工程学院, 安徽 马鞍山 243032

联系人作者:张兴权(zhxq@ahut.edu.cn)

【1】Luo K Y, Zhou Y, Lu J Z, et al. Influence of laser shock peening on microstructure and property of cladding layer of 316L stainless steel[J]. Chinese Journal of Lasers, 2017, 44(4): 0402005.
罗开玉, 周阳, 鲁金忠, 等. 激光冲击强化对316L不锈钢熔覆层微观结构和性能的影响[J]. 中国激光, 2017, 44(4): 0402005.

【2】Yang X W, Zhou J Z, Sheng J, et al. Microstructure evolution and surface strengthening mechanism of TC6 titanium alloy by laser peening[J]. Acta Optica Sinica, 2017, 37(9): 0914001.
杨祥伟, 周建忠, 盛杰, 等. TC6钛合金激光喷丸组织演变与表面强化机理[J]. 光学学报, 2017, 37(9): 0914001.

【3】Zhu R, Zhang Y K, Sun G F, et al. Numerical simulation of residual stress fields in three-dimensional flattened laser shocking of 2024 aluminum alloy[J]. Chinese Journal of Lasers, 2017, 44(8): 0802007.
朱然, 张永康, 孙桂芳, 等. 三维平顶光束激光冲击2024铝合金的残余应力场数值模拟[J]. 中国激光, 2017, 44(8): 0802007.

【4】Li X, He W F, Nie X F, et al. Regularity of residual stress distribution in titanium alloys induced by laser shock peening with different energy spatial distributions[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061402.
李翔, 何卫锋, 聂祥樊, 等. 不同能量空间分布激光冲击钛合金残余应力的分布规律[J]. 激光与光电子学进展, 2018, 55(6): 061402.

【5】Zhang X Q, Li H, Huang Z L,et al. Numerical simulation of residual stress induced in 7075 aluminum alloy by repeated high-power laser pulses[J]. Chinese Journal of Lasers, 2015, 42(12): 1203002.
张兴权, 李欢, 黄志来, 等. 7075铝合金激光多点冲击诱导残余应力的数值模拟[J]. 中国激光, 2015, 42(12): 1203002.

【6】King A, Steuwer A, Woodward C, et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials Science and Engineering A, 2006, 435/436: 12-18.

【7】Scherpereel X, Peyre P, Fabbro R, et al. Modifications of mechanical and electrochemical properties of stainless surfaces by laser shock processing[C]. Proceedings of SPIE, 1997, 3097: 546-557.

【8】Hammersley G, Hackel L A, Harris F. Surface prestressing to improve fatigue strength of components by laser shot peening[J]. Optics and Lasers in Engineering, 2000, 34(4/5/6): 327-337.

【9】Zhang X Q, Li H, Yu X L,et al. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate[J]. Materials & Design, 2015, 65: 425-431.

【10】Wu J J, Zhao J B, Qiao H C, et al. The application status and development of laser shock processing[J]. Opto-Electronic Engineering, 2018, 45(2): 170690.
吴嘉俊, 赵吉宾, 乔红超, 等. 激光冲击强化技术的应用现状与发展[J]. 光电工程, 2018, 45(2): 170690.

【11】Luo M, Luo K Y, Wang Q W, et al. Numerical simulation of laser shock peening on residual stress field of 7075-T6 aluminum alloy welding[J]. Acta Optica Sinica, 2014, 34(4): 0414003.
罗密, 罗开玉, 王庆伟, 等. 激光冲击7075-T6铝合金焊缝的残余应力场数值模拟[J]. 光学学报, 2014, 34(4): 0414003.

【12】Zhang L, Luo K Y, Lu J Z, et al. Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint[J]. Materials Science and Engineering A, 2011, 528(13/14): 4652-4657.

【13】Luo K Y, Lu J Z, Zhang Y K, et al. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Materials Science and Engineering A, 2011, 528(13/14): 4783-4788.

【14】Luo K Y, Yao H X, Dai F Z, et al. Surface textural features and its formation process of AISI 304 stainless steel subjected to massive LSP impacts[J]. Optics and Lasers in Engineering, 2014, 55: 136-142.

【15】Kong D J, Zhou C Z, Wu Y Z. Mechanism on residual stress of 304 stainless steel by laser shock processing[J]. Infrared and Laser Engineering, 2010, 39(4): 736-740.
孔德军, 周朝政, 吴永忠. 304不锈钢激光冲击处理后的残余应力产生机理[J]. 红外与激光工程, 2010, 39(4): 736-740.

【16】Liu Y X, Wang X, Wu X Q,et al. Surface morphology and deformation mechanism of 304 stainless steel treated by laser shock peening[J]. Chinese Journal of Lasers, 2013, 40(1): 0103004.
柳沅汛, 王曦, 吴先前, 等. 激光冲击处理304不锈钢表面的形貌特征及其机理分析[J]. 中国激光, 2013, 40(1): 0103004.

【17】Zhong J S, Lu J Z, Luo K Y, et al. Influence of laser shock processing on tensile properties and tribological behaviors of AISI304 stainless steel[J]. Chinese Journal of Lasers, 2013, 40(5): 0503002.
钟金杉, 鲁金忠, 罗开玉, 等. 激光冲击对AISI304不锈钢拉伸性能和摩擦磨损性能的影响[J]. 中国激光, 2013, 40(5): 0503002.

【18】Li Y Q, Wang X D, Song F L, et al. Study on microstructure and performances of 304 stainless steel treated by laser shock processing[J]. Infrared and Laser Engineering, 2016, 45(10): 1006005.
李玉琴, 王学德, 宋飞龙, 等. 激光冲击304不锈钢微观组织和性能研究[J]. 红外与激光工程, 2016, 45(10): 1006005.

【19】Moko W, Radziejewska J, Sarzyński A, et al. Analysis of the plastic deformation of AISI 304 steel induced by the nanosecond laser pulse[J]. Optics & Laser Technology, 2017, 90: 165-173.

【20】Sun R J, Zhu Y, Guo W, et al. Effect of laser shock processing on surface morphology and residual stress field of TC17 titanium alloy by FEM method[J]. Journal of Plasticity Engineering, 2017, 24(1): 187-193.
孙汝剑, 朱颖, 郭伟, 等. 激光冲击强化对TC17表面形貌及残余应力场影响的有限元数值模拟研究[J]. 塑性工程学报, 2017, 24(1): 187-193.

【21】Azzam D, Menzemer C C, Srivatsan T S. The fracture behavior of an Al-Mg-Si alloy during cyclic fatigue[J]. Materials Science and Engineering A, 2010, 527(20): 5341-5345.

【22】Zhang X Q, Chen L S, Li S Z, et al. Investigation of the fatigue life of pre- and post-drilling hole in dog-bone specimen subjected to laser shot peening[J]. Materials & Design, 2015, 88: 106-114.

【23】Srivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524[J]. Materials & Design, 2002, 23(2): 129-139.

引用该论文

Wang Jun,Li Min,Wang Jingxue,Zhang Xingquan,Wei Wei,Qi Xiaoli,Wang Huitin. Effects of Laser Shock Processing on Fatigue Life of 304 Stainless Steel[J]. Chinese Journal of Lasers, 2019, 46(1): 0102003

汪军,李民,汪静雪,张兴权,魏伟,戚晓利,王会廷. 激光冲击强化对304不锈钢疲劳寿命的影响[J]. 中国激光, 2019, 46(1): 0102003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF