首页 > 论文 > 中国激光 > 46卷 > 1期(pp:102007--1)

选区激光熔化4Cr5MoSiV1模具钢显微组织及显微硬度研究

Microstructure and Micro-hardness of 4Cr5MoSiV1 Die Steels Fabricated by Selective Laser Melting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用选区激光熔化(SLM)技术制备4Cr5MoSiV1模具钢试样, 研究激光线能量密度η对显微组织、碳元素损耗及显微硬度的影响。研究表明:SLM成型4Cr5MoSiV1模具钢试样的显微组织主要为马氏体和少量残余奥氏体。脱碳反应、飞溅行为和元素烧蚀共同造成碳元素的损耗, 当η=950 J·m-1时, 碳元素损耗率高达17.7%。随着η的增加, 试样的晶粒尺寸增大、碳元素损耗率升高、马氏体含量降低; 在同一η下, 试样过渡区的晶粒尺寸最小、碳元素损耗率最低, 而热影响区的晶粒尺寸最大、碳元素损耗率最高。随着η的减小, 孔隙缺陷增多; 当η过大时, 试样将出现冷裂纹缺陷。当η=905 J·m-1时, 试样显微组织均匀, 致密度高, 具有较高的显微硬度(熔池中心区域为710.3 HV, 过渡区为732.4 HV)。

Abstract

The 4Cr5MoSiV1 die steel samples are fabricated by the selective laser melting (SLM) technique. The influence of laser linear energy density η on microstructures, carbon loss and micro-hardness of samples is investigated. The results show that the microstructures of SLM-formed 4Cr5MoSiV1 die steel samples are mainly martensite and a little amount of residual austenite. The decarburization reaction, splashing behavior and elemental ablation together cause carbon loss, and the carbon loss rate is as high as 17.7% at η=950 J·m-1. With the increase of η, the grain sizes of samples increase, the carbon loss rate increases and the martensite content decreases. Under the same η, the grain size and the carbon loss rate in the transition zones of samples are the smallest, while those in the heat affected zones are the highest. With the decrease of η, the pore defects become more. When η is too large, the cold cracks appear. When η is 905 J·m-1, the samples possess uniform microstructures, high densities, and relatively high micro-hardness (that in central zone of molten pool is 710.3 HV and that in transition zone is 732.4 HV).

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG142.1

DOI:10.3788/cjl201946.0102007

所属栏目:激光制造

收稿日期:2018-07-27

修改稿日期:2018-09-13

网络出版日期:2018-09-25

作者单位    点击查看

陈帅:陆军工程大学石家庄校区火炮工程系, 河北 石家庄 050003
陶凤和:陆军工程大学石家庄校区火炮工程系, 河北 石家庄 050003
贾长治:陆军工程大学石家庄校区火炮工程系, 河北 石家庄 050003

联系人作者:陶凤和(fhtao63@126.com)

【1】Liu B, Cui Z J, Tan J H, et al. Development status and trend of die & mould manufacturing technology[J]. Die & Mould Industry, 2017, 43(11): 1-8.
刘斌, 崔志杰, 谭景焕, 等. 模具制造技术现状与发展趋势[J]. 模具工业, 2017, 43(11): 1-8.

【2】Altan T, Lilly B, Yen Y C, et al. Manufacturing of dies and molds[J]. CIRP Annals, 2001, 50(2): 404-422.

【3】Li D M, Han J Y. Study on the precision solution of technology of processing with the electric spark in mold industry[J]. Journal of Inner Mongolia University for Nationalities(Natural Sciences), 2007, 22(1): 69-71.
李冬梅, 韩敬宇. 电火花加工技术在模具加工中精度问题分析及对策[J]. 内蒙古民族大学学报(自然科学版), 2007, 22(1): 69-71.

【4】Li S C. Die steel application experience manual[M]. Beijing: Machinery Industry Press, 2011: 303-304.
李书常. 模具钢应用经验手册[M]. 北京: 机械工业出版社, 2011: 303-304.

【5】Ye X C, Liu S Y, Chen S H,et al. Heat treatment process of H13 hot die steel after forging[J]. Heat Treatment of Metals, 2013, 38(12): 72-74.
叶喜葱, 刘绍友, 陈实华, 等. H13热作模具钢锻后热处理工艺[J]. 金属热处理, 2013, 38(12): 72-74.

【6】Chen C R, Wang Y, Ou H G, et al. A review on remanufacture of dies and moulds[J]. Journal of Cleaner Production, 2014, 64: 13-23.

【7】Zhao J Y, Zhang Y Z, Li D F, et al. Properties study of Co-Cr alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(11): 1103006.
赵进炎, 张永志, 李东方, 等. 选区激光熔化钴铬合金的性能研究[J]. 中国激光, 2015, 42(11): 1103006.

【8】Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6): 0601007.
杨永强, 王迪, 吴伟辉. 金属零件选区激光熔化直接成型技术研究进展[J]. 中国激光, 2011, 38(6): 0601007.

【9】Yang Y Q, Chen J, Song C H,et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011401.
杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 011401.

【10】Zheng D L. Fabrication of H13 by selective laser melting and residual stress analysis[D]. Harbin: Harbin Institute of Technology, 2016: 33-37.
郑东来. H13钢的选择性激光熔化制备及残余应力分析[D]. 哈尔滨: 哈尔滨工业大学, 2016: 33-37.

【11】Yan K, Chen C J, Zhang M, et al. Microstructure and properties of laser additive manufacturing and tempered H13 steel[J]. China Surface Engineering, 2017, 30(2): 134-142.
严凯, 陈长军, 张敏, 等. 激光增材制造H13钢及回火处理的组织和性能[J]. 中国表面工程, 2017, 30(2): 134-142.

【12】Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 2016, 83: 882-890.

【13】Laakso P, Riipinen T, Laukkanen A, et al. Optimization and simulation of SLM process for high density H13 tool steel parts[J]. Physics Procedia, 2016, 83: 26-35.

【14】Wen S F, Ji X T, Zhou Y, et al. Development status and prospect of selective laser melting of mould steels[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011404.
文世峰, 季宪泰, 周燕, 等. 激光选区熔化成形模具钢的发展现状及前景[J]. 激光与光电子学进展, 2018, 55(1): 011404.

【15】Chen Y C, Zhang S Q, Tian X J, et al. Microstructure and microhardness of 4045 aluminum alloy fabricated by laser melting deposition[J]. Chinese Journal of Lasers, 2015, 42(3): 0303008.
陈永城, 张述泉, 田象军, 等. 激光熔化沉积4045铝合金显微组织及显微硬度[J]. 中国激光, 2015, 42(3): 0303008.

【16】Yadroitsev I, Krakhmalev P, Yadroitsava I,et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J]. Journal of Materials Processing Technology, 2013, 213(4): 606-613.

【17】Kou S. Welding metallurgy[M]. Yan J C, Yang J G, Zhang G J, Transl. 2th ed. Beijing: Higher Education Press, 2012: 91-106.
辛多·柯. 焊接冶金学[M]. 闫久春, 杨建国, 张广军, 译. 2版. 北京: 高等教育出版社, 2012: 91-106.

【18】Chen H Y, Gu D D, Gu R H, et al. Microstructure evolution and mechanical properties of 5CrNi4Mo die steel parts by selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 2016, 43(2): 0203003.
陈洪宇, 顾冬冬, 顾荣海, 等. 5CrNi4Mo模具钢选区激光熔化增材制造组织演变及力学性能研究[J]. 中国激光, 2016, 43(2): 0203003.

【19】Ma M M. A comparative study on fundamentals of two typical laser additive manufacturing technologies of metallic[D]. Wuhan: Huazhong University of Science and Technology, 2016: 57-64.
马明明. 两种典型金属零部件激光增材制造技术基础比较研究[D]. 武汉: 华中科技大学, 2016: 57-64.

【20】Li C. Metallography principle[M]. Harbin: Harbin Institute of Technology Press, 1996: 56-57.
李超. 金属学原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 1989: 56-57.

【21】Qian D Y, Chen C J, Zhang M, et al. Study on microstructure and micro-mechanical properties of porous aluminum alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(4): 0403002.
钱德宇, 陈长军, 张敏, 等. 选区激光熔化成形多孔铝合金的显微组织及微观力学性能研究[J]. 中国激光, 2016, 43(4): 0403002.

【22】Liu B S, Zhu G S, Li H X, et al. Decarburization rate of RH refining for ultra-low carbon steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(1): 22-27.

【23】Hillier S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation[J]. Clay Minerals, 2000, 35(1): 291-302.

【24】Zhang W Y. Welding metallurgy[M]. Beijing: Machinery Industry Press, 1996: 142-150.
张文钺. 焊接冶金学[M]. 北京: 机械工业出版社, 1995: 142-150.

引用该论文

Chen Shuai,Tao Fenghe,Jia Changzhi. Microstructure and Micro-hardness of 4Cr5MoSiV1 Die Steels Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2019, 46(1): 0102007

陈帅,陶凤和,贾长治. 选区激光熔化4Cr5MoSiV1模具钢显微组织及显微硬度研究[J]. 中国激光, 2019, 46(1): 0102007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF