宽光谱广角蛾眼抗反射超表面结构设计分析
Design and Analysis of Moth-Eye Antireflective Metasurface Structure with Broadband and Wide-Angle
摘要
本研究采用严格耦合波分析法设计具有宽带广角抗反射特性的ZnS MS材料的蛾眼亚波长周期微纳结构。基于严格耦合波理论, 控制周期尺寸小于入射波长与材料折射率的比值, 实现高级次衍射波为倏逝波, 以提高蛾眼结构宽带抗反射效率。采用时域有限差分法分析蛾眼结构周期、底端直径、结构高度和顶端直径对光谱透过率的影响, 并对4种结构参数进行优化。此外, 还选取可见光、近红外和中红外三个特征波长进行宽角度入射的电场分析。研究结果表明:在短波范围内, 蛾眼宽角度抗反射性能取决于结构表面的减反射和前向散射的能力; 而在长波范围内, 蛾眼结构被视为ZnS MS平面膜层, 其光谱特性主要受Fabry-Perot干涉影响。该研究为不同波段宽角度蛾眼结构设计提供了理论依据和设计方法。
Abstract
A bionic moth-eye sub-wavelength periodic micro-nanostructure of ZnS MS material, with broadband and wide-angle antireflection properties is designed by the rigorous coupled-wave analysis method. According to the rigorous coupled wave theory, a suitable control of periodic size, smaller than the ratio between the incident wavelength and the refractive index of materials, makes the high-order diffracted wave as an evanescent wave, and thus the broadband antireflection efficiency of this moth-eye structure is enhanced. The finite difference time domain algorithm is used to investigate the effects of moth-eye structural period, bottom diameter, structural height and top diameter on spectral transmissivity. Moreover, four structural parameters are optimized. In addition, three characteristic wavelengths in the visible, near-infrared and middle-infrared regime are selected for the electric field analysis under a wide-angle incidence. The research results show that in the short-wavelength range, the moth-eye wide-angle anti-reflection performance is determined by the anti-reflection and forward-scattering ability of this structural surface, while in the long-wavelength range, the moth-eye structure is regarded as a ZnS MS plane film, and its spectral properties are mainly affected by the Fabry-Perot interference. This study provides a theoretical basis and a design method for the design of moth-eye wide-angle structures under different wavelengths.
中图分类号:O485;TN305
所属栏目:微纳光学
基金项目:国家自然科学基金(51505078)、吉林省自然科学基金项目(20150101038JC)
收稿日期:2018-07-30
修改稿日期:2018-08-27
网络出版日期:2018-09-25
作者单位 点击查看
付跃刚:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
欧阳名钊:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
赵宇:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
朱启凡:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
吴锦双:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
联系人作者:付跃刚(fuyg@cust.edu.cn)
【1】Siddique R H, Diewald S, Leuthold J, et al. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies[J]. Optics Express, 2013, 21(12): 14351-14361.
【2】Siddique R H, Gomard G, Hlscher H. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly[J]. Nature Communications, 2015, 6: 6909.
【3】Stavenga D G, Leertouwer H L, Megli A, et al. Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon[J]. PeerJ, 2018, 6: e4590.
【4】Mendoza-Galván A, Muoz-Pineda E, Ribeiro S J L, et al. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films[J]. Journal of Optics, 2018, 20(2): 024001.
【5】Whitney H M, Reed A, Rands S A, et al. Flower iridescence increases object detection in the insect visual system without compromising object identity[J]. Current Biology, 2016, 26(6): 802-808.
【6】Siddique R H, Donie Y J, Gomard G, et al. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers[J]. Science Advances, 2017, 3(10): e1700232.
【7】Palanchoke U, Jovanov V, Kurz H, et al. Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells[J]. Applied Physics Letters, 2013, 102(8): 083501.
【8】Schade M, Fuhrmann B, Bohley C, et al. Regular arrays of Al nanoparticles for plasmonic applications[J]. Journal of Applied Physics, 2014, 115(8): 084309.
【10】Yin M Q, Sun H W, Wang H B. Research progress in UV nanoimprint lithography technology[J]. Micronanoelectronic Technology, 2017, 54(5): 347-354.
殷敏琪, 孙洪文, 王海滨. 紫外纳米压印技术的研究进展[J]. 微纳电子技术, 2017, 54(5): 347-354.
【12】Liu L, Deng Q Z, Zhou Z P. Subwavelength-grating-assisted broadband polarization-independent directional coupler[J]. Optics Letters, 2016, 41(7): 1648-1651.
【13】Li H Q, Cui B B, Liu Y, et al. Investigation of the chip to photodetector coupler with subwavelength grating on SOI[J]. Optics & Laser Technology, 2016, 76: 79-84.
【15】Leem J W, Yu J S, Heo J,et al. Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications[J]. Solar Energy Materials and Solar Cells, 2014, 120: 555-560.
【16】Li Y F, Zhang J H, Zhu S J, et al. Biomimetic surfaces for high-performance optics[J]. Advanced Materials, 2009, 21(46): 4731-4734.
【17】Tan G J, Lee J H, Lan Y H, et al. Broadband antireflection film with moth-eye-like structure for flexible display applications[J]. Optica, 2017, 4(7): 678-683.
【21】Kong X D, Fu Y G, Xia L P, et al. Analysis of Ag nanoparticle resist in fabrication of transmission-enhanced subwavelength structures[J]. Journal of Nanophotonics, 2016, 10(4): 046017.
【22】Kong X D, Fu Y G, Zhang W G, et al. Analysis of random antireflective structures fabricated by silver dewetting to enhance transmission[J]. Journal of Nanophotonics, 2017, 11(3): 036019.
【23】Dong T T, Fu Y G, Zhang L, et al. The analysis of the effect on the moth-eye antireflection microstructure shape error[C]∥2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), October 5-9, 2015, Changchun, China. New York: IEEE, 2015: 251-254.
【24】Bett A J, Eisenlohr J, Hhn O, et al. Wave optical simulation of the light trapping properties of black silicon surface textures[J]. Optics Express, 2016, 24(6): A434-A445.
【25】Ding H, Lalouat L, Gonzalez-Acevedo B, et al. Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells[J]. Optics Express, 2016, 24(6): A650-A666.
【26】Zhang Y T, Xuan Y M. Preparation of structured surfaces for full-spectrum photon management in photovoltaic-thermoelectric systems[J]. Solar Energy Materials and Solar Cells, 2017, 169: 47-55.
引用该论文
Lin He,Fu Yuegang,Ouyang Mingzhao,Zhao Yu,Zhu Qifan,Wu Jinshuang. Design and Analysis of Moth-Eye Antireflective Metasurface Structure with Broadband and Wide-Angle[J]. Chinese Journal of Lasers, 2019, 46(1): 0113002
林鹤,付跃刚,欧阳名钊,赵宇,朱启凡,吴锦双. 宽光谱广角蛾眼抗反射超表面结构设计分析[J]. 中国激光, 2019, 46(1): 0113002