首页 > 论文 > 中国激光 > 46卷 > 1期(pp:113002--1)

宽光谱广角蛾眼抗反射超表面结构设计分析

Design and Analysis of Moth-Eye Antireflective Metasurface Structure with Broadband and Wide-Angle

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本研究采用严格耦合波分析法设计具有宽带广角抗反射特性的ZnS MS材料的蛾眼亚波长周期微纳结构。基于严格耦合波理论, 控制周期尺寸小于入射波长与材料折射率的比值, 实现高级次衍射波为倏逝波, 以提高蛾眼结构宽带抗反射效率。采用时域有限差分法分析蛾眼结构周期、底端直径、结构高度和顶端直径对光谱透过率的影响, 并对4种结构参数进行优化。此外, 还选取可见光、近红外和中红外三个特征波长进行宽角度入射的电场分析。研究结果表明:在短波范围内, 蛾眼宽角度抗反射性能取决于结构表面的减反射和前向散射的能力; 而在长波范围内, 蛾眼结构被视为ZnS MS平面膜层, 其光谱特性主要受Fabry-Perot干涉影响。该研究为不同波段宽角度蛾眼结构设计提供了理论依据和设计方法。

Abstract

A bionic moth-eye sub-wavelength periodic micro-nanostructure of ZnS MS material, with broadband and wide-angle antireflection properties is designed by the rigorous coupled-wave analysis method. According to the rigorous coupled wave theory, a suitable control of periodic size, smaller than the ratio between the incident wavelength and the refractive index of materials, makes the high-order diffracted wave as an evanescent wave, and thus the broadband antireflection efficiency of this moth-eye structure is enhanced. The finite difference time domain algorithm is used to investigate the effects of moth-eye structural period, bottom diameter, structural height and top diameter on spectral transmissivity. Moreover, four structural parameters are optimized. In addition, three characteristic wavelengths in the visible, near-infrared and middle-infrared regime are selected for the electric field analysis under a wide-angle incidence. The research results show that in the short-wavelength range, the moth-eye wide-angle anti-reflection performance is determined by the anti-reflection and forward-scattering ability of this structural surface, while in the long-wavelength range, the moth-eye structure is regarded as a ZnS MS plane film, and its spectral properties are mainly affected by the Fabry-Perot interference. This study provides a theoretical basis and a design method for the design of moth-eye wide-angle structures under different wavelengths.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O485;TN305

DOI:10.3788/cjl201946.0113002

所属栏目:微纳光学

基金项目:国家自然科学基金(51505078)、吉林省自然科学基金项目(20150101038JC)

收稿日期:2018-07-30

修改稿日期:2018-08-27

网络出版日期:2018-09-25

作者单位    点击查看

林鹤:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
付跃刚:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
欧阳名钊:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
赵宇:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
朱启凡:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022
吴锦双:长春理工大学光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022长春理工大学先进光学设计与制造技术吉林省高校重点实验室, 吉林 长春 130022

联系人作者:付跃刚(fuyg@cust.edu.cn)

【1】Siddique R H, Diewald S, Leuthold J, et al. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies[J]. Optics Express, 2013, 21(12): 14351-14361.

【2】Siddique R H, Gomard G, Hlscher H. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly[J]. Nature Communications, 2015, 6: 6909.

【3】Stavenga D G, Leertouwer H L, Megli A, et al. Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon[J]. PeerJ, 2018, 6: e4590.

【4】Mendoza-Galván A, Muoz-Pineda E, Ribeiro S J L, et al. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films[J]. Journal of Optics, 2018, 20(2): 024001.

【5】Whitney H M, Reed A, Rands S A, et al. Flower iridescence increases object detection in the insect visual system without compromising object identity[J]. Current Biology, 2016, 26(6): 802-808.

【6】Siddique R H, Donie Y J, Gomard G, et al. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers[J]. Science Advances, 2017, 3(10): e1700232.

【7】Palanchoke U, Jovanov V, Kurz H, et al. Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells[J]. Applied Physics Letters, 2013, 102(8): 083501.

【8】Schade M, Fuhrmann B, Bohley C, et al. Regular arrays of Al nanoparticles for plasmonic applications[J]. Journal of Applied Physics, 2014, 115(8): 084309.

【9】Bai Y F, Fan J, Zou Y G, et al. Fabrication of gratings used in 976 nm distributed feedback lasers based on laser interference lithography[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120501.
白云峰, 范杰, 邹永刚, 等. 激光干涉光刻制备976 nm分布反馈式激光器光栅[J]. 激光与光电子学进展, 2017, 54(12): 120501.

【10】Yin M Q, Sun H W, Wang H B. Research progress in UV nanoimprint lithography technology[J]. Micronanoelectronic Technology, 2017, 54(5): 347-354.
殷敏琪, 孙洪文, 王海滨. 紫外纳米压印技术的研究进展[J]. 微纳电子技术, 2017, 54(5): 347-354.

【11】Tian K, Zou Y G, Hai Y N, et al. Design of subwavelength anti-reflective grating[J]. Chinese Journal of Lasers, 2016, 43(9): 0901004.
田锟, 邹永刚, 海一娜, 等. 亚波长抗反射光栅的设计[J]. 中国激光, 2016, 43(9): 0901004.

【12】Liu L, Deng Q Z, Zhou Z P. Subwavelength-grating-assisted broadband polarization-independent directional coupler[J]. Optics Letters, 2016, 41(7): 1648-1651.

【13】Li H Q, Cui B B, Liu Y, et al. Investigation of the chip to photodetector coupler with subwavelength grating on SOI[J]. Optics & Laser Technology, 2016, 76: 79-84.

【14】Liu S R, Wang L, Sun Y J,et al. Enhancement of light extraction efficiency of LED by bionic moth-eye structure with frustum of a cone[J]. Acta Optica Sinica, 2018, 38(1): 0122001.
刘顺瑞, 王丽, 孙艳军, 等. 利用截头圆锥形仿生蛾眼结构提高LED光提取效率[J]. 光学学报, 2018, 38(1): 0122001.

【15】Leem J W, Yu J S, Heo J,et al. Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications[J]. Solar Energy Materials and Solar Cells, 2014, 120: 555-560.

【16】Li Y F, Zhang J H, Zhu S J, et al. Biomimetic surfaces for high-performance optics[J]. Advanced Materials, 2009, 21(46): 4731-4734.

【17】Tan G J, Lee J H, Lan Y H, et al. Broadband antireflection film with moth-eye-like structure for flexible display applications[J]. Optica, 2017, 4(7): 678-683.

【18】Fan P X, Long J Y, Jiang D F, et al. Study on ultrafast laser fabrication of UV-FIR ultra-broad-band antireflection surface micro-nano structures and their properties[J]. Chinese Journal of Lasers, 2015, 42(8): 0806005.
范培迅, 龙江游, 江大发, 等. 紫外-远红外超宽谱带高抗反射表面微纳米结构的超快激光制备及功能研究[J]. 中国激光, 2015, 42(8): 0806005.

【19】Dong T T, Fu Y G, Chen C, et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 2016, 36(5): 0522004.
董亭亭, 付跃刚, 陈驰, 等. 锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制[J]. 光学学报, 2016, 36(5): 0522004.

【20】Guan Q, Liao L W. Research of VIS/NIR/MIR multispectral anti-reflective hard window coatings on the sapphire substrate[J]. Optics & Optoelectronic Technology, 2017, 15(6): 66-72.
官庆, 廖林炜. 蓝宝石基底可见光/激光/中红外多光谱窗口薄膜研究[J]. 光学与光电技术, 2017, 15(6): 66-72.

【21】Kong X D, Fu Y G, Xia L P, et al. Analysis of Ag nanoparticle resist in fabrication of transmission-enhanced subwavelength structures[J]. Journal of Nanophotonics, 2016, 10(4): 046017.

【22】Kong X D, Fu Y G, Zhang W G, et al. Analysis of random antireflective structures fabricated by silver dewetting to enhance transmission[J]. Journal of Nanophotonics, 2017, 11(3): 036019.

【23】Dong T T, Fu Y G, Zhang L, et al. The analysis of the effect on the moth-eye antireflection microstructure shape error[C]∥2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), October 5-9, 2015, Changchun, China. New York: IEEE, 2015: 251-254.

【24】Bett A J, Eisenlohr J, Hhn O, et al. Wave optical simulation of the light trapping properties of black silicon surface textures[J]. Optics Express, 2016, 24(6): A434-A445.

【25】Ding H, Lalouat L, Gonzalez-Acevedo B, et al. Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells[J]. Optics Express, 2016, 24(6): A650-A666.

【26】Zhang Y T, Xuan Y M. Preparation of structured surfaces for full-spectrum photon management in photovoltaic-thermoelectric systems[J]. Solar Energy Materials and Solar Cells, 2017, 169: 47-55.

引用该论文

Lin He,Fu Yuegang,Ouyang Mingzhao,Zhao Yu,Zhu Qifan,Wu Jinshuang. Design and Analysis of Moth-Eye Antireflective Metasurface Structure with Broadband and Wide-Angle[J]. Chinese Journal of Lasers, 2019, 46(1): 0113002

林鹤,付跃刚,欧阳名钊,赵宇,朱启凡,吴锦双. 宽光谱广角蛾眼抗反射超表面结构设计分析[J]. 中国激光, 2019, 46(1): 0113002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF