首页 > 论文 > 中国激光 > 46卷 > 1期(pp:114002--1)

光敏可调的多波段电磁诱导透明超材料分析

Analysis of Photosensitive Tunable Multiband Electromagnetically Induced Transparency Metamaterials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种基于光敏半导体砷化镓的主动式电磁诱导透明超材料。砷化镓的光电特性使该超材料结构中的外围圆环能在各个光照条件下响应不同频率的电磁波; 其与中心开口环耦合, 分别能够在1.47 THz与0.7 THz两个频点处产生强烈的电磁诱导透明效应。通过调节光照强度来改变砷化镓的电导率, 并拆分表面金属环结构进行对比, 分析了该超材料结构的光敏性能与其实现多波段电磁诱导透明效应的物理机理; 同时研究了砷化镓宽度、中心开口环开口大小与基底厚度对电磁诱导透明效应的影响。仿真结果表明, 该超材料结构能够在不同光照条件下, 于太赫兹波段的多个频点处产生高强度的波速迟滞效应, 并伴随较高的折射率灵敏度, 在太赫兹缓存器件与折射率传感领域有一定的应用价值。

Abstract

An active electromagnetically induced transparency (EIT) metamaterial is designed based on photosensitive gallium arsenide. The photoelectric characteristics of gallium arsenide make the peripheral circular closed loop (PCCL) in a metamaterial structure respond to electromagnetic waves with different frequencies under different illumination conditions. It is coupled with its central split ring resonators (CSRRs) and thus a strong EIT effect is produced at two frequencies of 0.7 THz and 1.5 THz. The conductivity of gallium arsenide is changed by adjustment of light intensity, and the structures of surface metal rings are dismantled and compared. The photosensitivity of this metamaterial structure and the physical mechanism for the realization of a multiband EIT are analyzed. At the same time, the influences of gallium arsenide width, CSRRs opening size and substrate thickness on EIT are investigated. The simulation results show that this metamaterial structure can be used to achieve a strong hysteresis effect at multiple frequency points and simultaneously a relatively high refractive index sensitivity in the terahertz frequency range under different illumination conditions. It has certain application value in the fields of terahertz buffer devices and refractive index sensing.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201946.0114002

所属栏目:太赫兹技术

基金项目:国家自然科学基金(61827818, 61620106014)

收稿日期:2018-07-30

修改稿日期:2018-09-01

网络出版日期:2018-09-05

作者单位    点击查看

李广森:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
延凤平:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
王伟:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
乔楠:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044

联系人作者:延凤平(fpyan@bjtu.edu.cn)

【1】Tao H, Bingham C M, Pilon D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D, 2010, 43(22): 225102.

【2】Kussow A G, Akyurtlu A, Angkawisittpan N. Optically isotropic negative index of refraction metamaterial[J]. Physica Status Solidi B, 2008, 245(5): 992-997.

【3】Gingrich M A, Werner D H. Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms[J]. Electronics Letters, 2005, 41(23):1266-1267.

【4】Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001.
孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析[J]. 中国激光, 2018, 45(6): 0614001.

【5】Li Y, Liang B, Gu Z M, et al. Unidirectional acoustic transmission through a prism with near-zero refractive index[J]. Applied Physics Letters, 2013, 103(5): 053505.

【6】Russell P S J. Photonic-crystal fibers[J]. Journal of Lightwave Technology, 2006, 24(12): 4729-4749.

【7】Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.

【8】Herzog C P. Analytic holographic superconductor[J]. Physical Review D, 2010, 81(12): 126009.

【9】Maeda H, Tanaka Y,Fukutomi M, et al. A new high-Tc oxide superconductor without a rare earth element[J]. Japanese Journal of Applied Physics, 1988, 27: L209-L210.

【10】Kim J, Soref R, Buchwald W R. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull′s-eye-shaped metamaterial[J]. Optics Express, 2010, 18(17): 17997-18002.

【11】Sun Y R, Shi T L, Liu J J, et al. Terahertz label-free bio-sensing with EIT-like metamaterials[J]. Acta Optica Sinica, 2016, 36(3): 0328001.

【12】Zaccanti M, Deissler B, D′Errico C, et al. Observation of an Efimov spectrum in an atomic system[J]. Nature Physics, 2009, 5(8): 586-591.

【13】Lancia L, Marquès J R, Nakatsutsumi M, et al. Experimental evidence of short light pulse amplification using strong-coupling stimulated brillouin scattering in the pump depletion regime[J]. Physical Review Letters, 2010, 104(2): 025001.

【14】Singh R, Rockstuhl C, Lederer F, et al. Coupling between a dark and a bright eigenmode in a terahertz metamaterial[J]. Physical Review B, 2009, 79(8): 085111.

【15】Eggo R M, Scott J G, Galvani A P, et al. Respiratory virus transmission dynamics determine timing of asthma exacerbation peaks: evidence from a population-level model[J]. Proceedings of the National Academy of Sciences, 2016, 113(8): 2194-2199.

【16】Chiam S Y, Singh R, Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 2009, 80(15): 153103.

【17】Tang Y Z, Ma W Y, Wei Y H, et al. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 2017, 44(4):453-457.
唐雨竹, 马文英, 魏耀华, 等. 一种旋转可调的太赫兹超材料及其传感特性[J]. 光电工程, 2017, 44(4): 453-457.

【18】Jang J K, Erkintalo M, Schrder J, et al. All-optical buffer based on temporal cavity solitons operating at 10 Gb/s[J]. Optics Letters, 2016, 41(19): 4526-4529.

【19】Tian Z B, Yam S S H, Barnes J, et al. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers[J]. IEEE Photonics Technology Letters, 2008, 20(8): 626-628.

【20】Wang W, Zhang L, Fang K, et al. Experimental study of EIT-Like phenomenon in a metamaterial plasma waveguide[J]. Advanced Electromagnetics, 2012, 1(3): 61-63.

【21】Pitchappa P, Manjappa M, Ho C P, et al. Metamaterials: active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 2016, 4(4): 540-540.

【22】Zhao Q, Zhou J, Zhang F L, et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12): 60-69.

【23】Cao Y Y, Li Y, Liu Y Z, et al.Tunable electromagnetically induced transparency based on T-shaped graphene metamaterials[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(2):192-197.
曹妍妍, 李悦, 刘元忠, 等. 基于T型石墨烯超材料可调电磁诱导透明效应[J]. 太赫兹科学与电子信息学报, 2017, 15(2): 192-197.

【24】Gochuyeva A F, Kurbanov M A, Khudayarov B H, et al. Photoresistive effect in the composities consisting of organic and inorganic photosensitive semiconductors[J]. Digest Journal of Nanomaterials & Biostructures, 2018, 13(1):185-191.

【25】Gao Y W, Zhang Y J, Chen D, et al. Measurement of oxygen concentration using tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2016, 36(3): 0330001.
高彦伟, 张玉钧, 陈东, 等. 基于可调谐半导体激光吸收光谱的氧气浓度测量研究[J]. 光学学报, 2016, 36(3): 0330001.

【26】Jiao D, Lu M Y, Michielssen E, et al. A fast time-domain finite element-boundary integral method for electromagnetic analysis[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(10): 1453-1461.

【27】Wang Y, Lu Q P, Gao Y G. Impact of carbon contamination cleaning technologies on reflectivity of extreme ultraviolet lithography optics[J]. Chinese Journal of Lasers, 2017, 44(3): 0303004.
王依, 卢启鹏, 高云国. 碳污染清洗工艺对极紫外光刻光学元件反射率的影响[J]. 中国激光, 2017, 44(3): 0303004.

【28】Fan Z F, Tan Z Y, Wan W J, et al. Study on ultrafast dynamics of low-temperature grown GaAs by optical pump and terahertz probe spectroscopy[J]. Acta Physica Sinica, 2017, 66(8): 087801.
樊正富, 谭智勇, 万文坚, 等. 低温生长砷化镓的超快光抽运-太赫兹探测光谱[J]. 物理学报, 2017, 66(8): 087801.

【29】Szabo Z, Park G H, Hedge R, et al. A unique extraction of metamaterial parameters based on Kramers-Kronig relationship[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(10): 2646-2653.

引用该论文

Li Guangsen,Yan Fengping,Wang Wei,Qiao Nan. Analysis of Photosensitive Tunable Multiband Electromagnetically Induced Transparency Metamaterials[J]. Chinese Journal of Lasers, 2019, 46(1): 0114002

李广森,延凤平,王伟,乔楠. 光敏可调的多波段电磁诱导透明超材料分析[J]. 中国激光, 2019, 46(1): 0114002

被引情况

【1】桑苏玲. 多缀饰四波混频Autler-Townes分裂的相干控制. 激光与光电子学进展, 2019, 56(8): 81901--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF