首页 > 论文 > 中国激光 > 46卷 > 1期(pp:113001--1)

含矩形腔的MIM波导耦合T型腔结构Fano共振传感特性研究

Fano Resonance Sensing Characteristics of MIM Waveguide Coupled T-Shaped Cavity Structure with Rectangular Cavity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于表面等离激元在亚波长结构的传播特性, 提出了一种含矩形腔的金属-介质-金属(MIM)波导与T型腔耦合的结构。T型腔形成的较窄离散态与矩形腔形成的较宽连续态相互耦合, 经过干涉相消形成Fano共振。采用耦合模理论, 分析了Fano共振的形成机理; 运用有限元分析法对该结构进行模拟仿真, 分析结构参数对其折射率传感特性的影响。结果表明, 经过结构参数的优化, 其优质因子可达6.04×104, 灵敏度为1120 nm/RIU, 该研究结果可为光子回路的集成及纳米级传感器的设计提供理论参考。

Abstract

A T-shaped cavity coupled metal-insulator-metal (MIM) waveguide structure with a rectangle cavity is proposed based on the transmission characteristics of surface plasmon polaritons (SPPs) in a sub-wavelength structure. The Fano resonance occurs due to the destructive interference between the narrow discrete state formed by the T-shaped cavity and the broad continuous state formed by the rectangular cavity. The coupled mode theory (CMT) is adopted to analyze the formation mechanism of Fano resonance. The finite element method is used to simulate this structure and analyze the influences of structural parameters on its refractive index sensing characteristics. The results show that after the optimization of structural parameters, its figure of merit is 6.04×104, and the sensitivity is 1120 nm/RIU. This research can provide a theoretical reference for the integration of photonic circuits and the design of nanoscale sensors in the future.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201946.0113001

所属栏目:微纳光学

基金项目:国家自然科学基金(61201112,61475133)、河北省自然科学基金(F2016203188,F2016203245)、中国博士后基金(2018M630279)、河北省高等学校科学技术研究项目(ZD2018243)

收稿日期:2018-08-06

修改稿日期:2018-08-13

网络出版日期:2018-08-28

作者单位    点击查看

陈颖:燕山大学电气工程学院测试计量技术及仪器河北省重点实验室, 河北 秦皇岛 066004
许扬眉:燕山大学电气工程学院测试计量技术及仪器河北省重点实验室, 河北 秦皇岛 066004
高新贝:燕山大学电气工程学院测试计量技术及仪器河北省重点实验室, 河北 秦皇岛 066004
曹景刚:燕山大学电气工程学院测试计量技术及仪器河北省重点实验室, 河北 秦皇岛 066004
谢进朝:燕山大学电气工程学院测试计量技术及仪器河北省重点实验室, 河北 秦皇岛 066004
朱奇光:燕山大学信息科学与工程学院河北省特种光纤与光纤传感器重点实验室, 河北 秦皇岛 066004
李少华:河北先河环保科技股份有限公司, 河北 石家庄 050000

联系人作者:陈颖(chenying@ysu.edu.cn)

【1】Li L X, Liang Y Z, Lu M D, et al. Fano resonances in thin metallic grating for refractive index sensing with high figure of merit[J]. Plasmonics, 2016, 11(1): 139-149.

【2】Lu H, Gong Y K, Mao D, et al. Strong plasmonic confinement and optical force in phosphorene pairs[J]. Optics Express, 2017, 25(5): 5255-5263.

【3】Geng X M, Wang T J, Yang D Q, et al. Tunable plasmonic wavelength demultiplexing device using coupled resonator system[J]. IEEE Photonics Journal, 2016, 8(3): 1-8.

【4】Ren H, Li X, Zhang Q, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805-809.

【5】Hu F F, Yi H X, Zhou Z P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities[J]. Optics Letters, 2011, 36(8): 1500-1502.

【6】Yang Y R, Guan J F. Numerical study of plasma filters based on metal-dielectric-metal waveguide structures[J]. Acta Physica Sinica, 2016, 65(5): 057301.
杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究[J]. 物理学报, 2016, 65(5): 057301.

【7】Lu H, Liu X M, Wang L R, et al. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator[J]. Optics Express, 2011, 19(4): 2910-2915

【8】Liu J Q, Wang L L, He M D, et al. A wide bandgap plasmonic Bragg reflector[J]. Optics Express, 2008, 16(7): 4888-4894.

【9】Zhan Y H, Lei D Y, Li X F, et al. Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing[J]. Nanoscale, 2014, 6(9): 4705-4715.

【10】Chen Y, Luo P, Tian Y N, et al. Fano resonance slow light characteristics of metal-dielectric-metal waveguide coupled ring cavity with metallic double-slit[J]. Acta Optica Sinica, 2017, 37(9): 0924002.
陈颖, 罗佩, 田亚宁, 等. 含金属双缝的金属-电介质-金属波导耦合环形腔Fano共振慢光特性研究[J]. 光学学报, 2017, 37(9): 0924002.

【11】Wu D, Yin J, Tian J P, et al. Fano resonance characteristics of MIM waveguides with T-cavities[J]. Journal of Quantum Optics, 2018, 24(1): 55-66.
吴敌, 殷俊, 田晋平, 等. 带有T型腔的MIM波导的法诺共振特性研究[J]. 量子光学学报, 2018, 24(1): 55-66.

【12】Ren X B, Ren K, Cai Y X. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system[J]. Applied Optics, 2017, 56(31): H1-H9.

【13】Yang J H, Song X K, Chen Z, et al. Tunable multi-fano resonances in MDM-based side-coupled resonator system and its application in nanosensor[J]. Plasmonics, 2016, 12(6): 1665-1672.

【14】Zhang Z D, Ma L J, Gao F, et al. Plasmonically induced reflection in metal–insulator–metal waveguides with two silver baffles coupled square ring resonator[J]. Chinese Physics B, 2017, 26(12): 124212.

【15】Wen K, Hu Y, Chen L, et al. A compact and high-efficiency dichroic plasmonic splitter based on asymmetric T-shape waveguide[J]. Photonics and Nanostructures-Fundamentals and Applications, 2015, 13:120-126.

【16】Chen Z, Chen J, Yu L, et al. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator[J]. Plasmonics, 2015, 10(1): 131-137.

【17】Lu H, Yue Z Q, Zhao J L. Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides[J]. Optics Communications, 2018, 414: 16-21.

【18】Fu H X, Li S L, Wang Y L, et al. Independently tunable ultrasharp double fano resonances in coupled plasmonic resonator system[J]. IEEE Photonics Journal, 2018, 10(1): 1-9.

引用该论文

Chen Ying,Xu Yangmei,Gao Xinbei,Cao Jinggang,Xie Jinchao,Zhu Qiguang,Li Shaohua. Fano Resonance Sensing Characteristics of MIM Waveguide Coupled T-Shaped Cavity Structure with Rectangular Cavity[J]. Chinese Journal of Lasers, 2019, 46(1): 0113001

陈颖,许扬眉,高新贝,曹景刚,谢进朝,朱奇光,李少华. 含矩形腔的MIM波导耦合T型腔结构Fano共振传感特性研究[J]. 中国激光, 2019, 46(1): 0113001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF