首页 > 论文 > 中国激光 > 46卷 > 1期(pp:102008--1)

光纤激光切割中厚铝合金板工艺特性研究

Technological Characteristics in Fiber Laser Cutting of Medium-Thickness Aluminum Alloy Sheet

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了探究中厚板铝合金光纤激光切割工艺特性, 开展了光纤激光切割8 mm厚AA2219铝合金工艺实验, 系统研究了激光功率、切割速度、离焦量和辅助气压等工艺参数对切缝质量的影响。以根部挂渣高度和切缝下部分倾斜条纹区域所占板厚比例来表征切缝质量。实验结果表明, 激光功率和辅助气压是影响切缝质量的最主要的工艺参数, 当激光功率增大至5.4 kW、辅助气压取值范围增大至1100~1500 kPa时, 切缝挂渣量最少。最后, 为了进一步提高中厚度铝合金激光切割质量, 根据空气动力学原理, 利用流体力学模拟设计并制作了简易Laval喷嘴, 采用该喷嘴进行实验发现, 切缝表面倾斜条纹区域范围从0.5降至0.14, 而挂渣高度变化较小。

Abstract

To explore the technological characteristics in fiber laser cutting of medium-thickness aluminum alloy sheets, the fiber laser cutting of an 8 mm thick AA2219 Al alloy is carried out. The effects of process parameters such as laser power, cutting speed, defocusing distance and assistant gas pressure on the kerf quality are systematically investigated. The kerf quality is assessed by the dross height and the fraction of oblique striation zone of the lower part of kerf. The experimental results show that the kerf quality is mainly determined by laser power and assistant gas pressure. The dross height of the kerf is reduced to minimum when laser power increases to 5.4 kW and the range of gas pressure increases to 1100-1500 kPa. Moreover, in order to further improve the kerf quality of medium-thickness aluminum alloys, a simple Laval nozzle is designed and made by the hydrodynamics simulation based on the aerodynamics theory. The experiment with this nozzle discloses shows that the fraction of oblique striation zone is reduced from 0.5 to 0.14, while the dross height does not nearly change.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG485

DOI:10.3788/cjl201946.0102008

所属栏目:激光制造

基金项目:上海市军民融合专项(沪经信军[2017]365号)

收稿日期:2018-08-06

修改稿日期:2018-09-04

网络出版日期:2018-09-26

作者单位    点击查看

沈义平:上海航天精密机械研究所, 上海 201600
陈聪:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
高明:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
成群林:上海航天精密机械研究所, 上海 201600
李中权:上海航天精密机械研究所, 上海 201600
曾晓雁:华中科技大学武汉光电国家研究中心, 湖北 武汉 430074

联系人作者:陈聪(809431165@qq.com)

【1】Rajaram N, Sheikh-Ahmad J, Cheraghi S H. CO2 laser cut quality of 4130 steel[J]. International Journal of Machine Tools and Manufacture, 2003, 43(4): 351-358.

【2】Riveiro A, Quintero F, Lusquios F, et al. The role of the assist gas nature in laser cutting of aluminum alloys[J]. Physics Procedia, 2011, 12: 548-554.

【3】Yilbas B S. Laser cutting quality assessment and thermal efficiency analysis[J]. Journal of Materials Processing Technology, 2004, 155-156: 2106-2115.

【4】Salem H G, Mansour M S, Badr Y, et al. CW Nd∶YAG laser cutting of ultra low carbon steel thin sheets using O2 assist gas[J]. Journal of Materials Processing Technology, 2008, 196(1/2/3): 64-72.

【5】Arif A F M, Yilbas B S. Thermal stress developed during the laser cutting process: consideration of different materials[J]. The International Journal of Advanced Manufacturing Technology, 2008, 37(7/8): 698-704.

【6】Stournaras A, Stavropoulos P, Salonitis K, et al. An investigation of quality in CO2 laser cutting of aluminum[J]. CIRP Journal of Manufacturing Science and Technology, 2009, 2(1): 61-69.

【7】Riveiro A, Quintero F, Lusquios F, et al. Parametric investigation of CO2 laser cutting of 2024-T3 alloy[J]. Journal of Materials Processing Technology, 2010, 210(9): 1138-1152.

【8】Ge Y Q, Wang W X, Cui Z Q, et al. Corresponding experimentation research of aluminium alloy cutting using pulsed solid Nd∶YAG laser[J].Welding Technology, 2008, 37(5): 20-24.
葛亚琼, 王文先, 崔泽琴, 等. 铝合金脉冲固体Nd∶YAG激光切割及其对比试验[J]. 焊接技术, 2008, 37(5): 20-24.

【9】Ge Y Q, Wang W X, Cui Z Q, et al. Influence of assistant gas during Nd∶YAG laser cutting of 5A06 aluminium alloy[J]. Applied Laser, 2008, 28(5): 358-361, 394.
葛亚琼, 王文先, 崔泽琴, 等. 辅助气体对5A06铝合金Nd∶YAG激光切割质量的影响[J]. 应用激光, 2008, 28(5): 358-361, 394.

【10】Dubey A K, Yadava V. Optimization of kerf quality during pulsed laser cutting of aluminium alloy sheet[J]. Journal of Materials Processing Technology, 2008, 204(1/2/3): 412-418.

【11】Scintilla L D, Tricarico L, Wetzig A, et al. Investigation on disk and CO2 laser beam fusion cutting differences based on power balance equation[J]. International Journal of Machine Tools and Manufacture, 2013, 69: 30-37.

【12】Wandera C, Salminen A, Kujanpaa V. Inert gas cutting of thick-section stainless steel and medium-section aluminum using a high power fiber laser[J]. Journal of Laser Applications, 2009, 21(3): 154-161.

【13】Riveiro A, Quintero F, Lusquios F, et al. Laser cutting of 2024-T3 aeronautic aluminum alloy[J]. Journal of Laser Applications, 2008, 20(4): 230-235.

【14】Chen C, Gao M, Gu Y Z, et al. Study on fiber laser cutting of aluminum alloy sheet[J]. Chinese Journal of Lasers, 2014, 41(6): 0603004.
陈聪, 高明, 顾云泽, 等. 光纤激光切割铝合金薄板工艺特性研究[J]. 中国激光, 2014, 41(6): 0603004.

【15】Amara E H, Kheloufi K, Tamsaout T. 2D modeling of surface tension effect during laser metal cutting[C]∥32nd International Congress on Applications of Lasers & Electro-Optics, October 6-10, 2013, Miami, FL, USA. 2013: 99-103.

【16】Duan J, Man H C, Yue T M. Modelling the laser fusion cutting process: II. Distribution of supersonic gas flow field inside the cut kerf[J]. Journal of Physics D: Applied Physics, 2001, 34(14): 2135-2142.

【17】Wee L M, Li L. An analytical model for striation formation in laser cutting[J]. Applied Surface Science, 2005, 247: 277-284.

引用该论文

Shen Yiping,Chen Cong,Gao Ming,Cheng Qunlin,Li Zhongquan,Zeng Xiaoyan. Technological Characteristics in Fiber Laser Cutting of Medium-Thickness Aluminum Alloy Sheet[J]. Chinese Journal of Lasers, 2019, 46(1): 0102008

沈义平,陈聪,高明,成群林,李中权,曾晓雁. 光纤激光切割中厚铝合金板工艺特性研究[J]. 中国激光, 2019, 46(1): 0102008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF