首页 > 论文 > 中国激光 > 46卷 > 1期(pp:101004--1)

可低温工作的窄脉冲宽温激光器

Narrow Pulse Width lasers Operating over Wide Range of Low Temperature

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种可在低温环境下和100 ℃以上的宽温范围内稳定工作的纳秒级被动调Q的Nd∶YAG激光器。谐振腔采用抗失谐的双Porro棱镜组合腔型, 以热电制冷器控温的垂直腔面发射激光器侧面抽运Nd∶YAG板条晶体, 被动调Q晶体为Cr4+∶YAG。在抽运峰值功率为1 kW, 重复频率为1 Hz的条件下, 测量了激光器在不同温度下的工作情况。结果表明在-75~40 ℃温度范围内, 激光输出平均能量为18.79 mJ, 标准差为2.29 mJ, 脉宽约为4 ns, 近场光斑直径约为5 mm, 远场发散角小于0.9 mrad。激光器体积小、结构紧凑、可靠性高, 十分适合宽温范围尤其是低温环境下的空间激光应用。

Abstract

In this study, we describe a passively Q-switched Nd∶YAG nanosecond laser capable of operating stably over 100 ℃ and at low temperatures. The resonator is based on a stable, double-Porro-prism cavity structure. A Nd∶YAG slab is side-pumped via a vertical-cavity, surface-emitting laser array, and the temperature is controlled by a thermoelectric cooler. The passively Q-switched crystal is Cr4+∶YAG. We have tested the performance of the laser at different temperatures with a 1 kW peak pump power and 1 Hz repetition frequency. The results show that the average output energy of the laser is 18.79 mJ, the standard deviation is 2.29 mJ, the pulse width is ~4 ns, the near-field spot diameter is ~5 mm, and the far-field divergence angle is less than 0.9 mrad in the temperature range of -75-40 ℃. The lasers has a small size, compact structure, and high reliability. It is thus suitable for space-laser applications under a wide range of low-temperature conditions.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201946.0101004

所属栏目:激光器件与激光物理

基金项目:中国科学院青年创新促进会人才项目(2016226)

收稿日期:2018-08-09

修改稿日期:2018-09-19

网络出版日期:2018-10-17

作者单位    点击查看

白家荣:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049
刘源:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
钟朝阳:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
孟洁:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
施君杰:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
王明建:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
孟俊清:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
侯霞:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
陈卫标:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800

联系人作者:刘源(liuyuandt@126.com)

【1】Yu Z Z, Hou X, Zhou C Y. Progress and current state of space-borne laser altimetry[J]. Laser & Optoelectronics Progress, 2013, 50(2): 020006.
于真真, 侯霞, 周翠芸. 星载激光测高技术发展现状[J]. 激光与光电子学进展, 2013, 50(2): 020006.

【2】Goldberg L, Nettleton J, Schilling B, et al. Compact laser sources for laser designation, ranging and active imaging[J]. Proceedings of SPIE, 2007, 6552: 65520G.

【3】McCarthy J C, Young Y E, Day R C, et al. Athermal, lightweight, diode-pumped, 1-micron transmitter[J]. Proceedings of SPIE, 2005, 5707: 237-243.

【4】Tsunekane M, Taira T. Compact and wide temperature acceptance of VCSEL-pumped micro-laser for laser ignition[C]∥Advanced Solid-State Lasers 2013, October 27-November 1, 2013, Paris, France. Washington: OSA, 2013: ATu3A.58.

【5】Crépy B, Le Nevé M, Montagne J, et al. Efficient, diode temperature insensitive Nd∶YAG hybrid longitudinal/transversal-pumped zig-zag slab laser: delta concept[C]∥Advanced Solid-State Lasers, 2002, February 3-6, 2002, Québec City, Canada. Washington: OSA, 2002: TuC4.

【6】Lu S W, Meng J, Zhao X Q, et al. Temperature insensitive Nd∶GdVO4 laser with high peak power and narrow pulse width[J]. Chinese Journal of Lasers, 2018, 45(4): 0401009.
鲁绍文, 孟洁, 赵学强, 等. 高峰值功率窄脉宽宽温Nd∶GdVO4激光器[J]. 中国激光, 2018, 45(4): 0401009.

【7】Lee S T, Silver M, Barron A, et al. A compact laser target designator[J]. Proceedings of SPIE, 2016, 9834: 98340Q.

【8】Wei D K. Research on temperature insensitive laser technology and single-frequency double-pulse hybrid MOPA system[D]. Beijing: University of Chinese Academy of Sciences, 2016.
魏大康. 温度不敏感激光技术及单频双脉冲混合MOPA系统的研究[D]. 北京: 中国科学院大学, 2016.

【9】Chen S L, Zhang X, Jiang J, et al. VCSEL side-pumped all solid-state laser[J]. Chinese Journal of Lasers, 2018, 45(10):1001001.
陈思露, 张鑫, 蒋静, 等. VCSEL侧面泵浦的全固态激光器[J]. 中国激光, 2018, 45(10): 1001001.

【10】Yang H L. Study of high energy all-solid-state slab lasers for space applications[D]. Beijing: University of Chinese Academy of Sciences, 2016: 18-21.
杨海龙. 大能量空间全固态板条激光器的技术研究[D]. 北京: 中国科学院大学, 2016: 18-21.

【11】Li Y J, Zong N, Peng Q J. Characteristics and progress of vertical-cavity surface-emitting semiconductor lasers[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050006.
李玉娇, 宗楠, 彭钦军. 垂直腔面发射半导体激光器的特性及其研究现状[J]. 激光与光电子学进展, 2018, 55(5): 050006.

【12】Ma X H. Studies of techniques and thermal effect for spaceborne conductively cooling all solid-state laser[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2008: 15-20.
马秀华. 传导冷却空间全固态激光器热效应及其关键技术研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2008: 15-20.

【13】Yin S M, Wu Y, Sun N C. Influence of temperature on Cr4+∶YAG passive Q-switched laser plateau region[J]. Optics & Optoelectronic Technology, 2010, 8(1): 31-34.
尹升茂, 吴颖, 孙年春. 温度对Cr4+∶YAG被动调Q激光器坪区影响[J]. 光学与光电技术, 2010, 8(1): 31-34.

【14】Koechner W. Solid-state laser engineering[M]. Sun W, Jiang Z W, Cheng G X, Transl. Beijing: Science Press, 2002: 410-414.
Walter Koechner. 固体激光工程[M]. 孙文, 江泽文, 程国祥, 译. 北京: 科学出版社, 2002: 410-414.

【15】Degnan J J. Theory of the optimally coupled Q-switched laser[J]. IEEE Journal of Quantum Electronics, 1989, 25(2): 214-220.

【16】Degnan J J. Optimization of passively Q-switched lasers[J]. IEEE Journal of Quantum Electronics, 1995, 31(11): 1890-1901.

【17】Zhao S Z, Chen L, Zhang L, et al. Study on temperature dependence of the 1.064 μm stimulated emission cross section of Nd∶YAG crysyal[J]. Acta Photonica Sinica, 2004, 33(2): 133-135.
赵圣之, 陈磊, 张路, 等. Nd∶YAG晶体1.064 μm受激发射截面随温度变化特性研究[J]. 光子学报, 2004, 33(2): 133-135.

引用该论文

Bai Jiarong,Liu Yuan,Zhong Chaoyang,Meng Jie,Shi Junjie,Wang Mingjian,Meng Junqing,Hou Xia,Chen Weibiao. Narrow Pulse Width lasers Operating over Wide Range of Low Temperature[J]. Chinese Journal of Lasers, 2019, 46(1): 0101004

白家荣,刘源,钟朝阳,孟洁,施君杰,王明建,孟俊清,侯霞,陈卫标. 可低温工作的窄脉冲宽温激光器[J]. 中国激光, 2019, 46(1): 0101004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF