首页 > 论文 > 中国激光 > 46卷 > 1期(pp:104006--1)

鞘流技术在气溶胶颗粒物光学传感器上的应用研究

Application of Sheath Flow Technique in Aerosol Particle Sensor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

鞘流技术是实现高浓度气溶胶颗粒物光学检测的关键技术之一。在空气动力学理论和国外相关研究的基础上设计了一种气体鞘流器来实现高浓度气溶胶粒子的有效测量。首先根据大型通用有限元分析软件ANSYS中的Gambit和Fluent模块对鞘流器进行仿真分析,确定了一组最佳的设计参数并依此制作了相应的鞘流器实物, 仿真结果表明该鞘流器可以将样气气流直径从1 mm压缩到0.34 mm, 有明显的压缩效果。接着提出了一种用光学尘埃粒子计数器的粒径分布误差间接分析鞘流器压缩效果的实验方案, 并对比分析了在同一台粒子计数器上分别配置1.0 mm普通气嘴、0.5 mm普通气嘴以及鞘流气嘴三种情况下0.3 μm粒子粒径的分布情况。实验结果表明, 本研究设计的鞘流器能够有效降低尘埃粒子的重叠率, 显著提升粒子计数器的浓度检测上限值。该结果验证了流体动力学分析的可行性, 为实现高浓度气溶胶粒子的光学测量提供了重要基础。

Abstract

Sheath flow is one of the key technologies for the optical detection of high concentration aerosol particles. Based on the aerodynamics theory and the related researches abroad, a gas sheath flow jet is designed to achieve the effective measurement of high concentration aerosol particles. First, a group of optimal design parameters are determined according to the simulation analysis by the Gambit and Fluent modules in the large-scale general finite element analysis software of ANSYS, and a real sheath flow jet is made as well. In addition, the simulation results show that the sheath flow jet can compress the diameter of sample air flow from 1 mm to 0.34 mm, and the compression effect is obvious. Then, a kind of experiment scheme is put forward, in which the compression effect of a sheath flow jet is indirectly analyzed using the size distribution errors of a particle counter. Finally, the comparison and analysis of 0.3 μm particle distributions are achieved for 1.0 mm ordinary jet, 0.5 mm ordinary jet and sheath flow jet on the same particle counter. The experimental results show that the sheath flow jet designed here can effectively reduce the overlap rate of dust particles and significantly increase the concentration detection limit of a particle counter. These results verify the feasibility of hydrodynamic analysis and provide an important basis for the optical measurement of high concentration aerosol particles.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/cjl201946.0104006

所属栏目:测量与计量

基金项目:上海国际科技合作项目 (1652071050)、中国国际科技合作项目(2016YFE0110600)、中国科学院青年创新促进会人才项目

收稿日期:2018-09-13

修改稿日期:2018-09-21

网络出版日期:2018-10-15

作者单位    点击查看

鲁晨阳:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
张佩:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
王光辉:上海镭慎光电科技有限公司, 上海 201800
朱菁:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
黄惠杰:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800

联系人作者:黄惠杰(huanghuijie@siom.ac.cn)

【1】Yu X H, Che F X. Modern air microbiology and sampling detection and identification techniques[M]. Beijing: Military Medical Science Press, 1998: 1-3.
于玺华, 车凤翔. 现代空气微生物学及采检鉴技术[M]. 北京: 军事医学科学出版社, 1998: 1-3.

【2】Xu J W, Liu D, Xie C B, et al. Multi-wavelength fitting simulation and inversion of atmospheric aerosol spectrmm distribution[J]. Acta Optica Sinica, 2017, 37(10): 1001006.
徐继伟, 刘东, 谢晨波, 等. 大气气溶胶谱分布的多波长拟合模拟反演[J]. 光学学报, 2017, 37(10): 1001006.

【3】Chen S S, Xu Q S, Xu C D, et al. Calculation of whole atmospheric aerosol optical depth based on micro-pulse lidar[J]. Acta Optica Sinica, 2017, 37(7): 0701002.
陈莎莎, 徐青山, 徐赤东, 等. 基于微脉冲激光雷达计算整层大气气溶胶光学厚度[J]. 光学学报, 2017, 37(7): 0701002.

【4】Wang C J, Pan Y L, James D, et al. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm[J]. Analytica Chimica Acta, 2014, 820: 119-132.

【5】Lu C Y, Zhang P, Wang G H, et al. Accurate measurement of airborne biological particle concentration based on laser-induced fluorescence technique[J]. Journal of Aerosol Science, 2018, 117: 24-33.

【6】Hausmann A, Duschek F, Fischbach T, et al. Standoff detection: classification of biological aerosols using laser induced fluorescence (LIF) technique[J]. Proceedings of SPIE, 2014, 9073: 90730Z.

【7】Kaye P H, N A Eyles and J M Clark. A laser scattering instrmment for airborne particle size and shape classification[C]∥Proceedings of 2nd International Congress on Optical Particle Sizing.[S. l.]: [s. n.], 1990: 501-510.

【8】Pinnick R G, Hill S C, Nachman P, et al. Fluorescence particle counter for detecting airborne bacteria and other biological particles[J]. Aerosol Science and Technology, 1995, 23(4): 653-664.

【9】Hairston P P, Ho J, Quant F R. Design of an instrmment for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence[J]. Journal of Aerosol Science, 1997, 28(3): 471-482.

【10】Chen X F. Mathematical modeling and application of particle counter signal transmission and processing[D]. Nanjing: Nanjing university of science and technology, 1998.
程晓飞. 粒子计数器信号传输与处理的数学建模及应用[D]. 南京: 南京理工大学, 1998.

【11】Liang C L, Huang H J, Ren B Q, et al. Study of miniature optical sensor for laser particle counter[J]. Acta Optica Sinica, 2005, 25(9): 1260-1264.
梁春雷, 黄惠杰, 任冰强, 等. 激光尘埃粒子计数器微型光学传感器的研究[J]. 光学学报, 2005, 25(9): 1260-1264.

【12】Kong B, Fan S J, Zhuo Y, et al. A method for sheath flow forming, controlling, and detecting[J]. Proceedings of SPIE, 2007, 6716: 67160A.

【13】Chen L, Ren J C. Optimization of capillary electrophoresis-laser induced fluorescence detection with sheath-flow cuvette and its application to genetic analysis[J]. Chinese Journal of Analytical Chemistry, 2003, 31(12): 1413-1416.
陈林, 任吉存. 毛细管电泳-激光诱导荧光鞘流检测系统优化研究及在基因分析中的应用[J]. 分析化学, 2003, 31(12): 1413-1416.

【14】Zhan N B, Wu T H, Chen F, et al. Light-scattering liquid particle detector based on sheath flow technology[J]. Chinese Medical Equipment Journal, 2010, 31(4): 7-9.
詹宁波, 吴太虎, 陈锋, 等. 基于鞘流技术的光散射式液体粒子检测装置[J]. 医疗卫生装备, 2010, 31(4): 7-9.

【15】Hairston P. P, Dorman F D, and Sem G J, et al. Apparatus for measuring particle sizes and velocities: US5561515A[P]. 1996-10-01.

【16】Ho J Y W. Fluorescent biological particle detection system: US5701012A[P].1997-11-23.

【17】Hyun W K, Choi D Y, Lee K H, et al. Effects of sheath gas geometry on aerosol jet patterning and coating[C]∥International Conference on Flexible and Printed Electronics, November 11-13, 2009, Jeju Island, Korea. [S. l.]: [s. n.], 2009: 11-13.

【18】He C X, Zhang T H. Hydraulic drive and pnemmatic drive[M]. Wuhan: Huazhong University of Science and Technology Press, 1998: 24-25.
何存兴, 张铁华. 液压传动与气压传动[M]. 武汉: 华中理工大学出版社, 1998: 24-25.

【19】Zhu H J, Liu Y H, Xie L H. Fluent 12 fluid analysis and engineering simulation[M]. Beijing: Tsinghua University Press, 2011: 187.
朱红钧, 林元华, 谢龙汉. Fluent 12流体分析及工程仿真[M]. 北京: 清华大学出版社, 2011: 187.

【20】General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration. Chinese standard book nmmber: GB/T 6167-2007, Test method for performance of dust particle counter[S]. Beijing: Standards Press of China, 2007.
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国标准书号: GB/T 6167-2007尘埃粒子计数器性能试验方法[S]. 北京: 中国标准出版社, 2007

【21】General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China. National measuring technique standard of the People′s Republic of China: JJF 1190-2008, Calibration specification for airborne particle counter, Beijing: Standards Press of China, 2008.
中华人民共和国国家质量监督检验检疫总局. 中华人民共和国国家计量技术规范: JJF 1190-2008尘埃粒子计数器校准规范[S]. 北京: 中国标准出版社, 2008.

引用该论文

Lu Chenyang,Zhang Pei,Wang Guanghui,Zhu Jing,Huang Huijie. Application of Sheath Flow Technique in Aerosol Particle Sensor[J]. Chinese Journal of Lasers, 2019, 46(1): 0104006

鲁晨阳,张佩,王光辉,朱菁,黄惠杰. 鞘流技术在气溶胶颗粒物光学传感器上的应用研究[J]. 中国激光, 2019, 46(1): 0104006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF