首页 > 论文 > 中国激光 > 46卷 > 3期(pp:302004--1)

多脉冲激光冲击微胀形的成形极限及断裂模式

Forming Limit and Fracture Mode in Multiple-Pulse Laser Shock Micro-Bulging Process

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对T2紫铜箔材开展了多脉冲激光冲击微胀形实验, 研究了激光功率密度、初始晶粒尺寸和箔材厚度对胀形极限的影响, 分析了断裂工件的宏观和微观断口形貌, 讨论了箔材在多脉冲激光冲击微胀形时的断裂模式, 并分析了各断裂模式的产生机理。研究结果表明:激光功率密度会显著影响箔材断裂前可承受的最大脉冲次数, 但多脉冲成形方式不能提高箔材的胀形成形极限; 晶粒尺寸和特征尺寸对多脉冲激光冲击微胀形成形极限具有显著影响; 紫铜箔材在多脉冲激光冲击微胀形时存在拉伸断裂、剪切断裂、混合断裂和层裂4种断裂模式。

Abstract

Multiple-pulse laser shock micro-bulging experiments of T2 pure copper foils are conducted. The effects of laser power density, initial grain size and foil thickness on forming limit are investigated. Macro and micro fracture morphology of broken work are analyzed. The fracture mode of copper foils in multiple-pulse laser shock micro-bulging is discussed, and the mechanisms of four fracture modes are analyzed. Research results show that the laser power density has a significant influence on the maximum pulse number before fracture occurrence. In addition, the forming limit of foil cannot be increased through multiple-pulse forming method. Both grain size and feature size have a significant impact on the forming limit of multiple-pulsed laser shock micro-bulging. There are four fracture modes in multiple-pulse laser shock micro-bulging, that is, tensile fracture, shear fracture, mixed fracture and spallation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201946.0302004

所属栏目:激光制造

基金项目:国家自然科学基金(51205232, 51575314)、山东省自然科学基金(ZR2017BEE006)

收稿日期:2018-07-30

修改稿日期:2018-10-09

网络出版日期:2018-12-04

作者单位    点击查看

刘铮:山东大学材料液固结构演变与加工教育部重点实验室, 山东 济南 250061山东大学材料科学与工程学院, 山东 济南 250061
郑超:山东大学材料液固结构演变与加工教育部重点实验室, 山东 济南 250061山东大学材料科学与工程学院, 山东 济南 250061
宋立彬:山东大学材料液固结构演变与加工教育部重点实验室, 山东 济南 250061山东大学材料科学与工程学院, 山东 济南 250061
季忠:山东大学材料液固结构演变与加工教育部重点实验室, 山东 济南 250061山东大学材料科学与工程学院, 山东 济南 250061

联系人作者:郑超(zhengchao@sdu.edu.cn)

【1】Shan D B, Xu J, Wang C J, et al. The state of the art in plastic micro-forming[J]. Materials China, 2016, 35(4): 251-261.
单德彬, 徐杰, 王春举, 等. 塑性微成形技术研究进展[J]. 中国材料进展, 2016, 35(4): 251-261.

【2】Niehoff H S, Vollertsen F. Non-thermal laser stretch-forming[J]. Advanced Materials Research, 2005, 6/7/8: 433-440.

【3】Zheng C, Sun S, Ji Z, et al. Numerical simulation and experimentation of micro scale laser bulge forming[J]. International Journal of Machine Tools and Manufacture, 2010, 50(12): 1048-1056.

【4】Gao H, Cheng G J. Laser-induced high-strain-rate superplastic 3-D microforming of metallic thin films[J]. Proceedings of the IEEE, 2010, 19(2): 273-281.

【5】Zhou J Z, Gao B, Huang S, et al. Research on laser shock induced composite forming of copper foil flyer[J]. Chinese Journal of Lasers, 2012, 39(7): 0703009.
周建忠, 高彬, 黄舒, 等. 激光冲击铜箔飞片及其复合成形研究[J]. 中国激光, 2012, 39(7): 0703009.

【6】Zhang W H, Liu H X, Shen Z B, et al. Experimental research on laser-shock flexible micro-forming of multilayer-metal composite sheets[J]. Chinese Journal of Lasers, 2017, 44(7): 0702001.
张文昊, 刘会霞, 沈宗宝, 等. 多层金属复合板激光冲击柔性微成形实验研究[J]. 中国激光, 2017, 44(7): 0702001.

【7】Shen Z B, Liu H X, Wang X, et al. Improving the forming capability of laser dynamic forming by using rubber as a forming medium[J]. Applied Surface Science, 2016, 369: 288-298.

【8】Li J, Cheng G J. Multiple-pulse laser dynamic forming of metallic thin films for microscale three dimensional shapes[J]. Journal of Applied Physics, 2010, 108(1): 013107.

【9】Dong X H, Wang Q, Zhang H M, et al. The state of the art of size effects in micro-forming[J]. Scientia Sinica :Technologica, 2013, 43(2): 115-130.
董湘怀, 王倩, 章海明, 等. 微成形中尺寸效应研究的进展[J]. 中国科学:技术科学, 2013, 43(2): 115-130.

【10】Zheng C, Zhang X, Liu Z, et al. Investigation on initial grain size and laser power density effects in laser shock bulging of copper foil[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1/2/3/4): 1483-1496.

【11】China National Standardization Administration. Chinese standard book number: GB/T 6394—2017[S]. Beijing: China Standard Press, 2017.
中国国家标准化管理委员会. 中国标准书号: GB/T 6394—2017[S]. 北京: 中国标准出版社, 2017.

【12】Shen Z B, Wang X, Liu H X, et al. Rubber-induced uniform laser shock wave pressure for thin metal sheets microforming[J]. Applied Surface Science, 2015, 327: 307-312.

【13】Song L B, Zhang X, Zhang Y L, et al. Shortening post-processing and improving forming quality of holes in laser shock punching with the aid of silicone rubber[J]. Optics & Laser Technology, 2018, 106: 442-450.

【14】Vollertsen F, Niehoff H S, Wielage H. On the acting pressure in laser deep drawing[J]. Production Engineering, 2009, 3(1): 1-8.

【15】Ueji R, Kondo D, Takagi Y, et al. Grain size effect on high-speed deformation of Hadfield steel[J]. Journal of Materials Science, 2012, 47(22): 7946-7953.

【16】Chan W L, Fu M W, Lu J. The size effect on micro deformation behaviour in micro-scale plastic deformation[J]. Materials & Design, 2011, 32(1): 198-206.

【17】Sun Y H, Zhou J Z, Sheng J, et al. Tensile property and fracture analysis of 2024-T351 aluminum alloys by cryogenic laser peening[J]. Chinese Journal of Lasers, 2017, 44(8): 0802003.
孙云辉, 周建忠, 盛杰, 等. 深冷激光喷丸强化2024-T351铝合金拉伸性能及断口分析[J]. 中国激光, 2017, 44(8): 0802003.

【18】Zhang Q L, Wang R, Hong Y X, et al. Study on laser shock forming and fracture behavior of metal sheet[J]. Chinese Journal of Lasers, 2014, 41(4): 0403010.
张青来, 王荣, 洪妍鑫, 等. 金属板料激光冲击成形及其破裂行为研究[J]. 中国激光, 2014, 41(4): 0403010.

【19】Zhang Y J. Effects of annealing on spallation properties of high-purity OFHC[D]. Mianyang: China Academy of Engineering Physics, 2012: 43-69.
张友君. 退火与未退火高纯无氧铜的层裂特性研究[D]. 绵阳: 中国工程物理研究院, 2012: 43-69.

引用该论文

Liu Zheng,Zheng Chao,Song Libin,Ji Zhong. Forming Limit and Fracture Mode in Multiple-Pulse Laser Shock Micro-Bulging Process[J]. Chinese Journal of Lasers, 2019, 46(3): 0302004

刘铮,郑超,宋立彬,季忠. 多脉冲激光冲击微胀形的成形极限及断裂模式[J]. 中国激光, 2019, 46(3): 0302004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF