首页 > 论文 > 中国激光 > 46卷 > 3期(pp:311001--1)

近红外外差光谱温室气体柱浓度的探测方法

Measurement Method of Atmospheric Column Concentration of Greenhouse Gas Based on Near Infrared Heterodyne Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

搭建了一套以1.57 μm近红外半导体激光器作为本振光源的小型化被动式激光外差探测系统, 并将其用于大气环境监测。为对该系统的性能进行评估, 以窄线宽近红外外腔激光器岀射的光作为信号光, 与本振光混频, 得到系统的带宽为0.032 cm-1, 最小可探测灵敏度为25 pW, 为光电探测器暗电流噪声功率的1/68。利用该系统对大气CO2太阳光谱信号进行测量, 并反演了其中两条主要强吸收线所对应的体积分数, 结果均约为396×10-6, 误差为7.6×10-6, 测量结果与实际整层大气中的CO2柱浓度一致, 验证了该系统的可行性。

Abstract

A miniaturized passive laser heterodyne detection system is built for monitoring atmospheric environment with a near infrared diode laser operating at 1.57 μm as the local oscillator light source. In order to evaluate the performance of the system, we use light emitted by an external cavity laser with narrow linewidth as the signal light mixing with the local oscillator light. The bandwidth of the system is 0.032 cm-1 and the minimum detectable sensitivity is 25 pW, which is 1/68 of the dark current noise power of photodetector. CO2 solar spectral signal is measured with the system. The volume fractions of two main absorption lines are inverted, and the values are all around 396×10-6 with measurement error of 7.6×10-6. The measured results are consistent with the actual CO2 column concentration in the whole atmosphere, and the feasibility of the system for atmospheric environment monitoring is verified.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3788/cjl201946.0311001

所属栏目:光谱学

基金项目:国家重点研发计划(2017YFC0804900)

收稿日期:2018-08-30

修改稿日期:2018-11-14

网络出版日期:2018-11-27

作者单位    点击查看

邓昊:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
杨晨光:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
管林强:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
许振宇:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
姚路:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
阚瑞峰:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
何亚柏:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026

联系人作者:阚瑞峰(kanruifeng@aiofm.ac.cn)

【1】Delahaigue A, Courtois D, Thiébeaux C, et al. Atmospheric laser heterodyne detection[J]. Infrared Physics & Technology, 1996, 37(1): 7-12.

【2】Menzies R T, Shumate M S. Remote measurements of ambient air pollutants with a bistatic laser system[J]. Applied Optics, 1976, 15(9): 2080-2084.

【3】Menzies R T, Seals R K. Ozone monitoring with an infrared heterodyne radiometer[J]. Science, 1977, 197(4310): 1275-1277.

【4】Hinkley E D, Kelley P L. Detection of air pollutants with tunable diode lasers[J]. Science, 1971, 171(3972): 635-639.

【5】Weidmann D, Courtois D. Passive remote detection in a combustion system with a tunable heterodyne receiver: application to sulfur dioxide[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 83(3/4): 655-666.

【6】Schmülling F, Klumb B, Harter M, et al. High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator[J]. Applied Optics, 1998, 37(24): 5771-5776.

【7】Mumma M, Kostiuk T, Cohen S, et al. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 μm[J]. Nature, 1975, 253(5492): 514-516.

【8】Sun G W, Wei F, Zhang L, et al. Low-noise external cavity semiconductor lasers based on polarization-maintaining fiber Bragg gratings[J]. Chinese Journal of Lasers, 2018, 45(6): 0601004.
孙广伟, 魏芳, 张丽, 等. 基于保偏光纤光栅的低噪声外腔半导体激光器[J]. 中国激光, 2018, 45(6): 0601004.

【9】Du J, Sun Y G, Chen D J, et al. Research of a compact iodine-stabilized diode laser at 1064 nm[J]. Chinese Journal of Lasers, 2018, 45(7): 0701006.
杜娟, 孙延光, 陈迪俊, 等. 小型化碘稳频1064 nm半导体激光器研究[J]. 中国激光, 2018, 45(7): 0701006.

【10】Sonnabend G, Wirtz D, Vetterle V, et al. High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver[J]. Astronomy & Astrophysics, 2005, 435(3): 1181-1184.

【11】Weidmann D, Reburn W J, Smith K M. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies[J]. Review of Scientific Instruments, 2007, 78(7): 073107.

【12】Weidmann D, Wysocki G. High-resolution broadband (>100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser[J]. Optics Express, 2009, 17(1): 248-259.

【13】Nakagawa H, Aoki S, Sagawa H, et al. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii[J]. Planetary and Space Science, 2016, 126: 34-48.

【14】Weidmann D, Perrett B J, Macleod N A, et al. Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry[J]. Optics Express, 2011, 19(10): 9074-9085.

【15】Wilson E L, McLinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column[J]. Applied Physics B, 2014, 114(3): 385-393.

【16】Rodin A, Klimchuk A, Nadezhdinskiy A, et al. High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption[J]. Optics Express, 2014, 22(11): 13825-13834.

【17】Kurtz J, O′Byrne S. Multiple receivers in a high-resolution near-infrared heterodyne spectrometer[J]. Optics Express, 2016, 24(21): 23838-23848.

【18】Tan T, Cao Z S, Wang G S, et al. Study on the technology of the 4.4 μm mid-infrared laser heterodyne spectrum[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1516-1519.
谈图, 曹振松, 王贵师, 等. 4.4 μm中红外激光外差光谱探测技术研究[J]. 光谱学与光谱分析, 2015, 35(6): 1516-1519.

【19】Parvitte B, Zéninari V, Thiébeaux C, et al. Infrared laser heterodyne systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(5): 1193-1213.

【20】Tian Y, Sun Y W, Xie P H, et al. Quality optimization method for ambient CO2 inversion of high resolution Fourier transform infrared spectrum[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 48-53.
田园, 孙友文, 谢品华, 等. 高分辨率傅里叶变换红外光谱反演环境大气中CO2浓度的质量优化方法[J]. 光谱学与光谱分析, 2017, 37(1): 48-53.

引用该论文

Deng Hao,Yang Chenguang,Guan Linqiang,Xu Zhenyu,Yao Lu,Kan Ruifeng,He Yabai. Measurement Method of Atmospheric Column Concentration of Greenhouse Gas Based on Near Infrared Heterodyne Spectroscopy[J]. Chinese Journal of Lasers, 2019, 46(3): 0311001

邓昊,杨晨光,管林强,许振宇,姚路,阚瑞峰,何亚柏. 近红外外差光谱温室气体柱浓度的探测方法[J]. 中国激光, 2019, 46(3): 0311001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF