首页 > 论文 > 中国激光 > 46卷 > 3期(pp:302005--1)

扫描速率对激光熔覆Cu80Fe20偏晶涂层组织与耐磨性能的影响

Effects of Scanning Speed on Microstructure and Wear Resistance of Cu80Fe20 Immiscible Coatings Prepared by Laser Cladding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用激光熔覆技术制备了Cu80Fe20偏晶涂层, 研究了扫描速率对液相分离特征以及偏晶涂层显微硬度、耐磨性能的影响。研究结果表明: Cu80Fe20偏晶涂层内出现了分层现象, 大量由体心立方结构α-Fe、面心立方结构γ-Fe组成的富铁颗粒弥散分布于上层的面心立方ε-Cu基体内, 大量面心立方ε-Cu富铜颗粒分布于下层的α-Fe基体内; 随着激光扫描速率增大, 激光熔池的冷却速率增大, 富铁颗粒粒径逐渐减小, 面密度逐渐增大, 相邻富铁颗粒间的间距减小, 富铁颗粒对铜基体的阴影保护效应增强, 使得偏晶涂层的显微硬度与耐磨性能增加, 且均优于黄铜。

Abstract

The Cu80Fe20 immiscible coating is fabricated by laser cladding technique and the effects of scanning speed on the liquid phase separation characteristics, microhardness and wear resistance of the immiscible coating are investigated. The research results indicate that the delamination phenomenon appears in the Cu80Fe20 immiscible coatings; a large amount of Fe-rich particles consist of body-centered-cubic (bcc) α-Fe, face-centered-cubic (fcc) γ-Fe are dispersed in the upper fcc ε-Cu matrix, and a large amount of ε-Cu Cu-rich particles are distributed in the lower α-Fe matrix. With the increase of the laser scanning speed, the cooling rate of the molten pool increases and the size of Fe-rich particles decreases, while the surface density of Fe-rich particles increases, the spacing of neighbouring Fe-rich particles decreases, and therefore the shadow protection effect of Fe-rich particles on the Cu-rich matrix is enhanced, leading to the improvement in microhardness and wear resistance of the immiscible coating, which are both higher than those of brass.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG115.5+8

DOI:10.3788/cjl201946.0302005

所属栏目:激光制造

基金项目:国家自然科学基金(51471084)、江西省杰出青年基金(20162BCB23039)、天津市自然科学基金京津冀专项(17JCZDJC40500)

收稿日期:2018-09-19

修改稿日期:2018-11-24

网络出版日期:2018-12-04

作者单位    点击查看

赵淑珍:天津工业大学激光技术研究所, 天津 300387
金剑波:天津工业大学激光技术研究所, 天津 300387
谢敏:天津工业大学激光技术研究所, 天津 300387
许永波:天津工业大学激光技术研究所, 天津 300387
戴晓琴:天津工业大学激光技术研究所, 天津 300387
周圣丰:天津工业大学激光技术研究所, 天津 300387

联系人作者:周圣丰(zhousf1228@163.com)

【1】Fang Z C. Present status of heat resistant and electrical conductive copper alloys[J]. Development and Application of Materials, 1997, 12(4): 27-31.
方正春. 耐热和导电铜合金发展现状[J]. 材料开发与应用, 1997, 12(4): 27-31.

【2】Rawson A, Kisi E,Sugo H, et al. Effective conductivity of Cu-Fe and Sn-Al miscibility gap alloys[J]. International Journal of Heat and Mass Transfer, 2014, 77: 395-405.

【3】Zhang S L, Yin Z M. High-strength and high-conductivity copper alloys: designing considerations and their application[J]. Materials Review, 2003, 17(11): 26-29.
张生龙, 尹志民. 高强高导铜合金设计思路及其应用[J]. 材料导报, 2003, 17(11): 26-29.

【4】Tenwick M J, Davies H A. Enhanced strength in high conductivity copper alloys[J]. Materials Science and Engineering, 1988, 98: 543-546.

【5】Yuan F S, Zhong H Y. Research status and development trend of lead frame copper alloy materials[J]. Nonferrous Metals Engineering & Research, 2015, 36(2): 36-38.
袁孚胜, 钟海燕. 引线框架铜合金材料的研究现状及发展趋势[J]. 有色冶金设计与研究, 2015, 36(2): 36-38.

【6】Zhou S F, Wu C, Zhang T Y, et al. Carbon nanotube- and Fep-reinforced copper-matrix composites by laser induction hybrid rapid cladding[J]. Scripta Materialia, 2014, 76: 25-28.

【7】Zhou S F, Lei J B, Xiong Z, et al. Synthesis of Fep/Cu-Cup/Fe duplex composite coatings by laser cladding[J]. Materials & Design, 2016, 97: 431-436.

【8】Dai X Q, Xie M, Zhou S F, et al. Formation mechanism and improved properties of Cu95Fe5 homogeneous immiscible composite coating by the combination of mechanical alloying and laser cladding[J]. Journal of Alloys and Compounds, 2018, 740: 194-202.

【9】Dong J, Chen S Y, Liu D L, et al. Structure and mechanism of Co-based alloy coating with laser inducing in-situ synthesis on the surface of copper alloy[J]. Chinese Journal of Lasers, 2009, 36(5): 1302-1307.
董江, 陈岁元, 刘大亮, 等. 铜合金表面激光原位制备钴基合金涂层的结构与机制[J]. 中国激光, 2009, 36(5): 1302-1307.

【10】Abbas S F, Kim T S. Effect of lattice strain on the electrical conductivity of rapidly solidified copper-iron metastable alloys[J]. Journal of Alloys and Compounds, 2018, 732: 129-135.

【11】Munitz A, Abbaschian R. Microstructure of Cu-Co alloys solidified at various supercoolings[J]. Metallurgical and Materials Transactions A, 1996, 27(12): 4049-4059.

【12】Li D, Robinson M B,Rathz T J, et al. Direct determination of the metastable liquid miscibility gap in undercooled Cu-Co alloys[J]. Materials Letters, 1998, 36(1/2/3/4): 152-156.

【13】Curiotto S, Pryds N H, Johnson E, et al. Effect of cooling rate on the solidification of Cu58Co42[J]. Materials Science and Engineering A, 2007, 449/450/451: 644-648.

【14】Wang C P. Formation of immiscible alloy powders with egg-type microstructure[J]. Science, 2002, 297(5583): 990-993.

【15】Nagase T, Suzuki M, Tanaka T. Formation of amorphous phase with crystalline globules in Fe-Cu-Nb-B immiscible alloys[J]. Journal of Alloys and Compounds, 2015, 619: 267-274.

【16】Dai X Q, Zhou S F, Wang M F, et al. Microstructure evolution of phase separated Fe-Cu-Cr-C composite coatings by laser induction hybrid cladding[J]. Surface and Coatings Technology, 2017, 324: 518-525.

【17】Liu S C, Jie J C, Guo Z K, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions[J]. Journal of Alloys and Compounds, 2018, 742: 99-106.

【18】Jiao X Y, Wang J, Wang C M, et al. Effect of laser scanning speed on microstructure and wear properties of T15M cladding coating fabricated by laser cladding technology[J]. Optics and Lasers in Engineering, 2018, 110: 163-171.

【19】Wang X Y, Zhou S F, Dai X Q, et al. Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 234-241.

【20】Xie M, Dai X Q, Zhao S Z, et al. Phase separated characteristics and properties of self-assembled Cu92Fe8 immiscible composite coating by laser cladding[J]. Chinese Journal of Lasers, 2018, 45(7): 0702010.
谢敏, 戴晓琴, 赵淑珍, 等. 激光熔覆自组装Cu92Fe8偏晶复合涂层的相分离特征与性能[J]. 中国激光, 2018, 45(7): 0702010.

【21】Dai X Q, Zhou S F, Wang M F, et al. Effect of substrate types on the microstructure and properties of Cu65Fe35 composite coatings by laser induction hybrid cladding[J]. Journal of Alloys and Compounds, 2017, 722: 173-182.

【22】Dai X Q, Xie M, Zhou S F, et al. Formation and properties of a self-assembled Cu-Fe-Ni-Cr-Si immiscible composite by laser induction hybrid cladding[J]. Journal of Alloys and Compounds, 2018, 742: 910-917.

【23】Zhou S F, Dai X Q, Xie M, et al. Phase separation and properties of Cu-Fe-Cr-Si-C immiscible nanocomposite by laser induction hybrid cladding[J]. Journal of Alloys and Compounds, 2018, 741: 482-488.

【24】Zeng D W, Xie C S, Wang M Q. In situ synthesis and characterization of Fep/Cu composite coating on SAE 1045 carbon steel by laser cladding[J]. Materials Science and Engineering A, 2003, 344(1/2): 357-364.

【25】Kk M, zdin K. Wear resistance of aluminium alloy and its composites reinforced by Al2O3 particles[J]. Journal of Materials Processing Technology, 2007, 183(2/3): 301-309.

【26】Lei J B, Shi C, Zhou S F, et al. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding[J]. Surface and Coatings Technology, 2018, 334: 274-285.

【27】Zhou S F, Lei J B, Dai X Q, et al. A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 17-27.

【28】Kumar S, Panwar R S, Pandey O P. Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites[J]. Ceramics International, 2013, 39(6): 6333-6342.

【29】Kumar S, Sharma V, Panwar R S, et al. Wear behavior of dual particle size (DPS) zircon sand reinforced aluminum alloy[J]. Tribology Letters, 2012, 47(2): 231-251.

【30】Sharma V, Kumar S, Panwar R S, et al. Microstructural and wear behavior of dual reinforced particle (DRP) aluminum alloy composite[J]. Journal of Materials Science, 2012, 47(18): 6633-6646.

【31】Zeng X Y. Behavior of ceramic phase in laser cladding cermet composite layer[D]. Wuhan: Huazhong University of Science and Technology, 1993.
曾晓雁. 激光熔覆金属陶瓷复合层中陶瓷相的行为研究[D]. 武汉: 华中理工大学, 1993.

引用该论文

Zhao Shuzhen,Jin Jianbo,Xie Min,Xu Yongbo,Dai Xiaoqin,Zhou Shengfeng. Effects of Scanning Speed on Microstructure and Wear Resistance of Cu80Fe20 Immiscible Coatings Prepared by Laser Cladding[J]. Chinese Journal of Lasers, 2019, 46(3): 0302005

赵淑珍,金剑波,谢敏,许永波,戴晓琴,周圣丰. 扫描速率对激光熔覆Cu80Fe20偏晶涂层组织与耐磨性能的影响[J]. 中国激光, 2019, 46(3): 0302005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF