首页 > 论文 > 中国激光 > 46卷 > 3期(pp:304004--1)

基于流体驱动的水下激光自主扫描近程方位探测方法

Underwater Laser Autonomous Scanning Short-Range Azimuth Detection Method Based on Fluid-Driven

甘霖   张合  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对水下近程来袭目标的探测问题, 提出一种利用流体动力驱动的随机定位方法; 利用航行水动力驱动单光束脉冲激光进行动态扫描, 利用磁传感器记录扫描周期; 基于重尾函数推导目标回波方程, 建立磁探测系统磁偶极子等效模型, 采用峰值和阈值检测法分别解算光磁信号; 建立水下近程目标捕获模型和方位探测精度等效模型, 研究激光发射功率、脉宽、阈值和噪声对测量精度的影响机理。结果表明:方位角测量精度和目标捕获率随着激光发射功率的增大而提高, 随着脉宽和接收电路噪声电压的增大而降低; 方位角测量精度在检测阈值为300 mV时达到最大, 目标捕获率随着阈值的增大有轻微变化, 当阈值接近回波脉冲峰值时, 目标捕获率迅速降低。

Abstract

Aiming at the problem of underwater short-range detection of incoming targets, a random positioning method driven by fluid dynamics is proposed. The single-beam pulse laser driven by the navigation hydrodynamic force is used to dynamically scan, and the scanning periodic is recorded by the magnetic sensor. Based on the heavy tail function, the target echo equation is derived, and the magnetic dipole equivalent model of the magnetic detection system is established. The optical magnetic measurement signals are calculated respectively by using the peak detection method and the threshold detection method. The underwater short-range target acquisition model and the azimuth detection accuracy equivalent model are established. The influence mechanism of laser emission power, pulse width, threshold, and noise on measurement accuracy is studied. The results show that the azimuth measurement accuracy and target capture rate increase with the increase of the laser emission power, and decrease with the increase of the pulse width and the receiving circuit noise voltage. The azimuth measurement accuracy reaches the maximum when the detection threshold is 300 mV. The capture rate varies slightly with the increase of the threshold. When the threshold is close to the peak of the echo pulse, the target capture rate decreases rapidly.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TJ43

DOI:10.3788/cjl201946.0304004

所属栏目:测量与计量

基金项目:国家自然科学基金(51605227)、中央高校基本科研业务费专项资金(NUST30915011303)

收稿日期:2018-10-10

修改稿日期:2018-11-21

网络出版日期:2018-12-04

作者单位    点击查看

甘霖:南京理工大学机械工程学院, 江苏 南京 210094
张合:南京理工大学机械工程学院, 江苏 南京 210094

联系人作者:甘霖(kg568605@163.com)

【1】Liu Z M. China′s maritime security strategy under the changing international situation: a structural study[J]. International Review, 2011(3): 1-9.
刘中民. 国际海洋形势变革背景下的中国海洋安全战略: 一种框架性的研究[J]. 国际观察, 2011(3): 1-9.

【2】Xiao C M, Li H, Peng P. Development of torpedo defence systems of foreign surface ships[J]. Torpedo Technology, 2014, 22(2): 150-156.
肖昌美, 李恒, 彭佩. 国外水面舰艇鱼雷防御系统发展现状及趋势[J]. 鱼雷技术, 2014, 22(2): 150-156.

【3】David E. Pre-emptive defence: guarding against the modern torpedo[J]. Jane′s International Defence Review, 2011, 44: 48-53.

【4】Kreisher O. Torpedo defence against state of the art torpedos[J]. Naval Forces, 2009, 30(4): 84-88.

【5】Wang X H, Yang Y H, Heng H, et al. Anti-torpedo torpedo development status and operational use[J]. Winged Missiles Journal, 2012(5): 54-58.
王新华, 杨迎化, 衡辉, 等. 反鱼雷鱼雷发展现状及作战使用[J]. 飞航导弹, 2012(5): 54-58.

【6】Wang F, Zhao Y, Zhang Y, et al. Range accuracy limitation of pulse ranging systems based on Geiger mode single-photon detectors[J]. Applied Optics, 2010, 49(29): 5561-5566.

【7】Xu X B, Zhang H, Zhang X J, et al. Effect of plane target characteristics on ranging distribution for pulse laser detection[J]. Acta Physica Sinica, 2016, 65(21): 210601.
徐孝彬, 张合, 张祥金, 等. 脉冲激光探测平面目标特性对测距分布的影响[J]. 物理学报, 2016, 65(21): 210601.

【8】Guo J, Zhang H, Wang X F. Beam spread characteristics of laser fuze in the rain[J]. Chinese Journal of Lasers, 2012, 39(1): 0113001.
郭婧, 张合, 王晓锋. 激光引信在降雨中的光束扩展特性[J]. 中国激光, 2012, 39(1): 0113001.

【9】Schwartz S A, Wallenstein K J, Lee D S. Automatic target recognition system for detection and classification of objects in water: US7916933[P]. 2011-03-29.

【10】Bruno F, Bianco G,Muzzupappa M, et al. Experimentation of structured light and stereo vision for underwater 3D reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4): 508-518.

【11】Gan L, Zhang H, Zhang X J. Research on large FOV single transceiver bidirectional-driving detection technology for laser fuze[J]. Acta Armamentarii, 2013, 34(8): 942-947.
甘霖, 张合, 张祥金. 激光引信双向驱动单发单收大视场探测技术研究[J]. 兵工学报, 2013, 34(8): 942-947.

【12】Tan Y Y, Zhang H, Zha B T. Underwater single beam circumferentially scanning detection system using range-gated receiver and adaptive filter[J]. Journal of Modern Optics, 2017, 64(16): 1648-1656.

【13】Jiang H J, Lai J C, Yan W, et al. Theoretical distribution of range data obtained by laser radar and its applications[J]. Optics & Laser Technology, 2013, 45: 278-284.

【14】Zhang W, Zhang H, Chen Y, et al. Angle measurement uncertainty statistical distribution of pulsed laser quadrant photodetector[J]. Acta Physica Sinica, 2017, 66(1): 012901.
张伟, 张合, 陈勇, 等. 脉冲激光四象限探测器测角不确定性统计分布[J]. 物理学报, 2017, 66(1): 012901.

引用该论文

Gan Lin,Zhang He. Underwater Laser Autonomous Scanning Short-Range Azimuth Detection Method Based on Fluid-Driven[J]. Chinese Journal of Lasers, 2019, 46(3): 0304004

甘霖,张合. 基于流体驱动的水下激光自主扫描近程方位探测方法[J]. 中国激光, 2019, 46(3): 0304004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF