首页 > 论文 > 中国激光 > 46卷 > 3期(pp:302008--1)

激光-钨极稀有气体电弧复合焊接等离子体的多重成像特征

Multiple Imaging Characteristics of Plasma in Laser-Tungsten Inert Gas Arc Hybrid Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用高速摄像仪自带的多重成像镜头观测了CO2激光-钨极稀有气体(TIG)电弧复合焊接等离子体的多重成像特征。结果表明:采用多重成像技术可同时获得同一个等离子体的三个面积逐渐减小、光强逐渐增大的区域形态; 氩气保护复合焊接等离子体的颜色由蓝白色逐渐变为红色, 不能区分金属和氩弧等离子体; 在氦气保护下, 自第二次成像开始, 氦弧等离子体几乎不可见, 仅余仍为亮白色的金属等离子体; 等离子体中的氦在可见光区辐射的线状谱较少(光强相对弱), 是氦气保护下能明显区分出金属等离子体的主要原因; 复合焊接中金属等离子体与保护气等离子体没有充分混合, 电弧等离子体对金属等离子体的形态具有显著影响。

Abstract

The multi-imaging characteristics of CO2 laser-tungsten inert gas (TIG) arc hybrid welding plasma are observed by a high-speed camera with a self-made multi-imaging system. The research results show that three regions of the same plasma with decreasing area and increasing light intensity can be obtained at the same time by multiple imaging technology. The color of plasma gradually changes from blue and white to red in argon shielded hybrid welding, and the metal vapor plasma and argon arc plasma can′t be distinguished. Since the second imaging, helium arc plasma is almost invisible, and the remaining metal plasma is still bright white. The less linear spectrum of helium radiation in the visible region (relatively weak light intensity) is the main reason why metal plasma can be distinguished clearly in helium protection; the metal plasma and shielding gas plasma are not fully mixed in hybrid welding. And the morphology of the metal plasma can be obvious influenced by the arc plasma.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG403

DOI:10.3788/cjl201946.0302008

所属栏目:激光制造

基金项目:国家重点研发计划(2018YFB1107801), 北京市教委科技计划一般项目(KM201710005014)

收稿日期:2018-10-23

修改稿日期:2018-11-16

网络出版日期:2018-12-04

作者单位    点击查看

王利达:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
李敏:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
邹江林:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
郭士慧:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
肖荣诗:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124

联系人作者:邹江林(zoujianglin1@163.com)

【1】Steen W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11): 5636-5641.

【2】Wang Q M, Qiao J N, Zou J L, et al. Fiber laser-variable polarity TIG hybrid welding of A7N01 aluminum alloy with filler wire[J]. Chinese Journal of Lasers, 2016, 43(6): 0602004.
王启明, 乔俊楠, 邹江林, 等. A7N01铝合金光纤激光-变极性TIG复合填丝焊接工艺研究[J]. 中国激光, 2016, 43(6): 0602004.

【3】Hu L H, Huang J, Wu Y X, et al. Study on coupling mechanism and metal transfer in laser double-wire MIG arc hybrid welding[J]. Chinese Journal of Lasers, 2016, 43(6): 0602005.
胡连海, 黄坚, 吴毅雄, 等. 激光-双MIG电弧复合焊耦合机制及熔滴过渡研究[J]. 中国激光, 2016, 43(6): 0602005.

【4】Jasnau U, Hoffmann J, Seyffarth P. Nd∶YAG-laser-GMA-hybrid welding in shipbuilding and steel construction[C]. Lecture Notes in Control and Information Sciences, 2004, 299: 14-24.

【5】Gu S Y, Liu Z J, Zhang P L, et al. Appearances and formation mechanism of welds in high-strength steels by high speed laser-arc hybrid welding[J]. Chinese Journal of Lasers, 2018, 45(12): 1202007.
顾思远, 刘政君, 张培磊, 等. 高速激光电弧复合焊接高强钢焊缝的形貌及成形机理[J]. 中国激光, 2018, 45(12): 1202007.

【6】Naito Y, Mizutani M, Katayama S. Penetration characteristics in YAG laser and TIG arc hybrid welding, and arc and plasma/plume behaviour during welding: welding phenomena in hybrid welding using YAG laser and TIG arc[J]. Welding International, 2006, 20(10): 777- 784.

【7】Chen Y B, Li L Q, Wu L. Quantitative measurement of absorption and defocusing of laser beam by electric arc[J]. Transactions of the China Welding Institution, 2003, 24(3): 56- 58.
陈彦宾, 李俐群, 吴林. 电弧对激光吸收与散焦的定量测量[J]. 焊接学报, 2003, 24(3): 56-58.

【8】Chen Y B, Chen J, Li L Q, et al. Properties of arc and weld in laser-TIG hybrid process[J]. Transactions of the China Welding Institution, 2003, 24(1): 55-56, 60.
陈彦宾, 陈杰, 李俐群, 等. 激光与电弧相互作用时的电弧形态及焊缝特征[J]. 焊接学报, 2003,24(1): 55-56, 60.

【9】Sibillano T, Ancona A, Rizzi D, et al. Study on the correlation between plasma electron temperature and penetration depth in laser welding processes[J]. Physics Procedia, 2010, 5: 429-436.

【10】Sibillano T, Rizzi D, Ancona A, et al. Spectroscopic monitoring of penetration depth in CO2 Nd∶YAG and fiber laser welding processes[J]. Journal of Materials Processing Technology, 2012, 212(4): 910-916.

【11】Zhang H Z, Wu S K, Xiao R S. Influence of TIG arc on characteristics of high power CO2 laser beam[J]. Transactions of the China Welding Institution, 2009, 30(7): 29-32.
张寰臻, 吴世凯, 肖荣诗. TIG电弧对高功率CO2激光光束特性的影响[J]. 焊接学报, 2009, 30(7): 29-32.

【12】Zhang H Z, Wu S K, Xiao R S.Characteristics of DC TIG arc with the action of a vertically incident CO2 laser beam[J]. Transactions of the China Welding Institution, 2009, 30(3): 97-100.
张寰臻, 吴世凯, 肖荣诗. CO2激光作用下直流TIG电弧特性分析[J]. 焊接学报, 2009, 30(3): 97-100.

【13】Ando H, Hasegawa K. Welding arc phenomenon[M]. Shi Y X, Transl. Beijing: Mechanical Industry Press, 1985: 56- 57.
安藤弘平, 长谷川光雄. 焊接电弧现象[M]. 施雨湘, 译. 北京: 机械工业出版社, 1985: 56- 57.

【14】Zuo T C. Laser materials processing of high-strength aluminum alloy[M]. Beijing: National Defense Industry Press, 2002.
左铁钏. 高强铝合金的激光加工[M]. 北京: 国防工业出版社, 2002.

【15】Zou J L, Xiao R S, Huang T, et al. Plume temperature diagnosis with the continuous spectrum and Wien′s displacement law during high power fiber laser welding[J]. Laser Physics, 2014, 24(10): 106007.

【16】Liu L M, Hao X F. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique[J]. Applied Physics, 2008,41(20): 205202.

【17】Wu S K. Investigation on laser-arc interaction and novel laser-TIG arc hybrid welding processes[D]. Beijing: Beijing University of Technology, 2010.
吴世凯. 激光-电弧相互作用及激光-TIG复合焊接新工艺研究[D]. 北京: 北京工业大学, 2010.

引用该论文

Wang Lida,Li Min,Zou Jianglin,Guo Shihui,Xiao Rongshi. Multiple Imaging Characteristics of Plasma in Laser-Tungsten Inert Gas Arc Hybrid Welding[J]. Chinese Journal of Lasers, 2019, 46(3): 0302008

王利达,李敏,邹江林,郭士慧,肖荣诗. 激光-钨极稀有气体电弧复合焊接等离子体的多重成像特征[J]. 中国激光, 2019, 46(3): 0302008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF