首页 > 论文 > 中国激光 > 46卷 > 3期(pp:302012--1)

5052铝合金高频微振激光焊接疲劳性能及损伤行为

Fatigue Properties and Fracture Behavior of 5052 Aluminum Alloys Welded by High Frequency Micro-Vibration Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用光纤激光器对5 mm厚的5052铝合金进行振动焊接, 研究其接头组织、残余应力对拉伸性能和疲劳性能的影响。研究结果表明, 振动焊接的焊缝组织柱状晶数量明显减少, 组织较常规焊缝更均匀细密。采用合适的振动频率与振动加速度, 焊缝残余应力可低至140 MPa, 而常规焊接焊缝的残余应力高达335 MPa。在应力比为0.1的拉-拉疲劳条件下, 母材和接头的条件疲劳极限分别为160 MPa和120 MPa。疲劳源区位于表面缺陷处, 裂纹以穿晶形式扩展, 大量疲劳条带及二次裂纹产生于断口处。

Abstract

The vibration welding test of a 5 mm thick 5052 aluminum alloy is carried out by a fiber laser. The influences of joint microstructure and residual stress on the tensile properties and fatigue properties are studied. The research results show that the number of columnar crystals in the weld microstructure after vibration welding is significantly reduced, and the microstructure is more uniform and finer than that of an ordinary weld. Under the suitable vibration frequency and vibration acceleration, the residual stress of weld is decreased to 140 MPa, while that of an ordinary weld is up to 335 MPa. Under the tension-tension fatigue condition with a stress ratio of 0.1, the conditional fatigue limits of the base metal and joints are 160 MPa and 120 MPa, respectively. The fatigue source is located in the surface defects and the cracks propagate in a transgranular way. A large number of fatigue striations and secondary cracks are formed in the fractures.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG456.7;TN249

DOI:10.3788/cjl201946.0302012

所属栏目:激光制造

基金项目:国家自然科学基金(51605276)、上海工程技术大学研究-生科研创新专项(17KY0503)

收稿日期:2018-11-01

修改稿日期:2018-12-06

网络出版日期:2018-12-18

作者单位    点击查看

张巍:上海工程技术大学材料工程学院, 上海 201620
卢庆华:上海工程技术大学材料工程学院, 上海 201620上海工程技术大学上海市高强激光智能加工装备关键技术产学研开发中心, 上海 201620
任新怀:上海工程技术大学材料工程学院, 上海 201620
白永真:上海工程技术大学材料工程学院, 上海 201620
金杰文:上海工程技术大学材料工程学院, 上海 201620
欧徉伶:上海工程技术大学材料工程学院, 上海 201620

联系人作者:卢庆华(Luqh@sues.edu.cn)

【1】Feng F, Li J J, Chen R C, et al. Effect of die geometry on the formability of 5052 aluminum alloy in electromagnetic impaction deformation[J]. Materials, 2018, 11(8): 1379.

【2】Kong X F, Li F, Lü J X, et al. Fiber laser welding of 5083 aluminum alloy with filler wire[J]. Chinese Journal of Lasers, 2014, 41(10): 1003007.
孔晓芳, 李飞, 吕俊霞, 等. 5083铝合金光纤激光填丝焊接工艺[J]. 中国激光, 2014, 41(10): 1003007.

【3】Zhang C, Gao M, Zeng X Y. Effect of microstructural characteristics on high cycle fatigue properties of laser-arc hybrid welded AA6082 aluminum alloy[J].Journal of Materials Processing Technology, 2016, 231: 479-487.

【4】Zhu J L, Xu S L, Jiao X D, et al. Study on laser lap welding of 304 stainless steel sheet[J]. Laser & Optoelectronics Progress, 2015, 52(7): 071404.
朱加雷, 徐世龙, 焦向东, 等. 304不锈钢薄板激光搭接焊工艺研究[J]. 激光与光电子学进展, 2015,52(7): 071404.

【5】Liu D Y, Li D, Li K B, et al. Influence of laser with same line energy on the microstructure and properties of welded[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101402.
刘东宇, 李东, 李凯斌, 等. 相同激光线能量对焊缝组织和性能的影响[J]. 激光与光电子学进展, 2015, 52(10): 101402.

【6】Ganev N, Kolaík K, Pala Z, et al. Influence of beam speed on residual stresses in the vicinity of laser welds[J]. Advanced Materials Research, 2014, 996: 463-468.

【7】Okano S, Mochizuki M. Experimental and numerical investigation of trailing heat sink effect on weld residual stress and distortion of austenitic stainless steel[J]. ISIJ International, 2016, 56(4): 647-653.

【8】Puga H, Costa S, Barbosa J, et al. Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy[J]. Journal of Materials Processing Technology, 2011, 211(11): 1729-1735.

【9】Yin H C, Chen L G, Zhang G Y, et al. Study on effect of vibrating welding technique[J]. Journal of Vibration and Shock, 2006, 25(4): 132-134.
尹何迟, 陈立功, 张光业, 等. 振动焊接工艺效果研究[J]. 振动与冲击, 2006, 25(4): 132-134.

【10】Zeidabadi H, Mirdamadi S, Godarzi M. Effect of vibration during GTAW welding on microstructure and mechanical properties of Ti6Al4V[J]. Russian Journal of Non-Ferrous Metals, 2015, 56(2): 217-221.

【11】Xu L P, Wang Q Y, Zhou M. Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue[J]. Materials Science and Engineering A, 2018, 715: 404-413.

【12】Xie C J, Yang S L, Liu H B, et al. Microstructure and fatigue properties of laser welded DP590 dual-phase steel joints[J]. Journal of Materials Engineering and Performance, 2017, 26(8): 3794-3801.

【13】Hu Y N, Wu S C, Song Z, et al. Fatigue property and fracture behavior of 7020 aluminum alloys welded by laser-MIG hybrid welding[J]. Chinese Journal of Lasers, 2018, 45(3): 0302003.
胡雅楠, 吴圣川, 宋哲, 等. 激光复合焊接7020铝合金的疲劳性能及损伤行为[J]. 中国激光, 2018,45(3): 0302003.

【14】Qiao J N, Wang Q M, Zhou J L, et al. Microstructure and mechanical property of A7N01 aluminum alloy joint by fiber laser-variable polarity TIG hybrid welding with filler wire[J]. Chinese Journal of Lasers, 2016, 43(9): 0902001.
乔俊楠, 王启明, 邹江林, 等. 光纤激光-变极性TIG复合填丝焊接A7N01铝合金接头的组织与力学性能[J]. 中国激光, 2016, 43(9): 0902001.

【15】Li Q Y, Luo Y, Wang Y J, et al. Microstructure and mechanical properties of twin spot laser welding of 5052 aluminum[J]. Transactions of the China Welding Institution, 2007, 28(12): 105-108.
李巧艳, 罗宇, 王亚军, 等. 5052铝合金双光点激光焊接组织与性能[J]. 焊接学报, 2007, 28(12): 105-108.

【16】Jia J, Yang S L, Ni W Y, et al. Microstructure and mechanical properties of fiber laser welded joints of ultrahigh-strength steel 22MnB5 and dual-phase steels[J]. Journal of Materials Research, 2014, 29(21): 2565-2575.

【17】Mecholsky J J, Jr. Fractography: determining the sites of fracture initiation[J]. Dental Materials, 1995, 11(2): 113-116.

引用该论文

Zhang Wei,Lu Qinghua,Ren Xinhuai,Bai Yongzhen,Jin Jiewen,Ou Yangling. Fatigue Properties and Fracture Behavior of 5052 Aluminum Alloys Welded by High Frequency Micro-Vibration Laser[J]. Chinese Journal of Lasers, 2019, 46(3): 0302012

张巍,卢庆华,任新怀,白永真,金杰文,欧徉伶. 5052铝合金高频微振激光焊接疲劳性能及损伤行为[J]. 中国激光, 2019, 46(3): 0302012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF