首页 > 论文 > 中国激光 > 46卷 > 3期(pp:302013--1)

基于皮秒激光的超疏水镍铝青铜合金表面的制备

Fabrication of Superhydrophobic Nickel-Aluminum Bronze Alloy Surfaces Based on Picosecond Laser Pulses

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用皮秒激光器在镍铝青铜合金表面制备了具有不同微观形貌的微纳米复合结构, 再通过硬脂酸进行表面修饰。采用扫描电镜和X射线衍射仪等表征了所得表面的形貌和化学成分。研究结果表明, 经皮秒激光加工和硬脂酸修饰后, 表面的接触角都达到150°以上。不同的脉冲能量密度下, 试样表面的微观形貌和润湿性不同。随着脉冲能量密度的增大, 修饰后的试样表面的滚动角逐渐减小, 当脉冲能量密度为6.85 J/cm2时, 滚动角减小到7°, 随着脉冲能量密度的进一步增加, 滚动角又逐渐增大。耐蚀性测试结果表明:超疏水镍铝青铜合金表面具有更好的耐腐蚀性能。采用优化的工艺参数可以在镍铝青铜合金上加工出超疏水表面, 有助于提高其耐腐蚀性能。

Abstract

The micro-nano composite structures with different micromorphologies are prepared on the nickel-aluminum bronze alloy surfaces by a picosecond laser, and then surface-modofied by stearic acid. Scanning electron microscopy and X-ray diffraction and others have been performed to characterize the morphologies and chemical composition. The research results show that the contact angle of the surfaces obtained by picosecond laser processing and surface modification of stearic acid is more than 150°. The samples have different surface morphologies and wettability under different laser fluences. With the increase of laser fluence, the sliding angle of the modified sample surface gradually decreases. When laser fluence is 6.85 J/cm2, the sliding angle decreases to 7°. With the further increase of laser fluence, the sliding angle gradually increases again. The corrosion resistance test results show that the surface of superhydrophobic nickel-aluminium bronze alloy has better corrosion resistance. The superhydrophobic surface of nickel-aluminium bronze alloy can be machined with optimized process parameters, which is helpful to improve the corrosion resistance of nickel-aluminium bronze alloy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201946.0302013

所属栏目:激光制造

基金项目:国家自然科学基金(51641102)

收稿日期:2018-11-01

修改稿日期:2018-12-03

网络出版日期:2018-12-13

作者单位    点击查看

章泽斌:江苏大学材料科学与工程学院, 江苏 镇江 212013
花银群:江苏大学材料科学与工程学院, 江苏 镇江 212013江苏大学机械工程学院, 江苏 镇江 212013
叶云霞:江苏大学机械工程学院, 江苏 镇江 212013
陈瑞芳:江苏大学机械工程学院, 江苏 镇江 212013
李志宝:江苏大学材料科学与工程学院, 江苏 镇江 212013
杨进:江苏大学材料科学与工程学院, 江苏 镇江 212013
帅文文:江苏大学材料科学与工程学院, 江苏 镇江 212013

联系人作者:花银群(huayq@ujs.edu.cn)

【1】Liu K S, Jiang L. Bio-inspired self-cleaning surfaces[J]. Annual Review of Materials Research, 2012, 42(1): 231-263.

【2】Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.

【3】Li X Y, Du X, He J H. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles[J]. Langmuir, 2010, 26(16): 13528-13534.

【4】Yang Z Q, Wang L D, Sun W, et al. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning[J]. Applied Surface Science, 2017, 401: 146-155.

【5】Huang Q G, Pan G, Wu H, et al. Investigation about drag reduction water tunnel experiment and mechanism of superhydrophobic surface[J].Journal of Experiments in Fluid Mechanics, 2011, 25(5): 21-25.
黄桥高, 潘光, 武昊, 等. 超疏水表面减阻水洞实验及减阻机理研究[J]. 实验流体力学, 2011, 25(5): 21-25.

【6】Zhang H, Lamb R, Lewis J. Engineering nanoscale roughness on hydrophobic surface: Preliminary assessment of fouling behaviour[J]. Science and Technology of Advanced Materials, 2005, 6(3/4): 236-239.

【7】Long J Y, Wu Y C, Gong D W,et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 2015, 42(7): 0706002.
龙江游, 吴颖超, 龚鼎为, 等. 飞秒激光制备超疏水铜表面及其抗结冰性能[J]. 中国激光, 2015, 42(7): 0706002.

【8】Wang L, Guo S J, Hu X G, et al. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface[J]. Electrochemistry Communications, 2008, 10(1): 95-99.

【9】Zhou S G, Zhu X B, Yan Q Q. One-step electrochemical deposition to achieve superhydrophobic cobalt incorporated amorphous carbon-based film with self-cleaning and anti-corrosion[J]. Surface and Interface Analysis, 2018, 50(3): 290-296.

【10】Shen P, Uesawa N, Inasawa S, et al. Characterization of flowerlike silicon particles obtained from chemical etching: Visible fluorescence and superhydrophobicity[J]. Langmuir, 2010, 26(16): 13522-13527.

【11】Tsougeni K, Papageorgiou D, Tserepi A, et al. “Smart” polymeric microfluidics fabricated by plasma processing: Controlled wetting, capillary filling and hydrophobic valving[J]. Lab on a Chip, 2010, 10(4): 462-469.

【12】Li Q Q, Yan Y H, Yu M, et al. Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating[J]. Applied Surface Science, 2016, 367: 101-108.

【13】Jin M H, Feng X J, Xi J M, et al. Super-hydrophobic PDMS surface with ultra-low adhesive force[J]. Macromolecular Rapid Communications, 2005, 26(22): 1805-1809.

【14】Cardoso M R, Tribuzi V, Balogh D T, et al. Laser microstructuring for fabricating superhydrophobic polymeric surfaces[J]. Applied Surface Science, 2011, 257(8): 3281-3284.

【15】Fadeeva E, Truong V K, Stiesch M, et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 2011, 27(6): 3012-3019.

【16】Jagdheesh R, Pathiraj B, Karatay E, et al. Laser-induced nanoscale superhydrophobic structures on metal surfaces[J]. Langmuir, 2011, 27(13): 8464-8469.

【17】Wu B, Zhou M, Li J, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 2009, 256(1): 61-66.

【18】Moradi S, Kamal S, Englezos P, et al. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 2013, 24(41): 415302.

【19】Li G Q, Li J W, Zhang C C, et al. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 383-390.

【20】Li B J, Zhou M, Yuan R, et al. Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability[J].Journal of Materials Research, 2008, 23(9): 2491-2499.

【21】Cheng J, Liu C S, Shang S, et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 2013, 46: 88-102.

【22】Liu Y, Jiang Y J.Super-hydrophobic surface of poly(vinylidene fluoride) film fast fabricated by KrF excimer laser irradiation[J]. Chinese Journal of Lasers, 2011, 38(1): 0106002.
刘莹, 蒋毅坚. 准分子激光快速制备超疏水性聚偏氟乙烯材料[J]. 中国激光, 2011, 38(1): 0106002.

【23】Farshchian B, Gatabi J R, Bernick S M, et al. Scaling and mechanism of droplet array formation on a laser-ablated superhydrophobic grid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547: 49-55.

【24】Yang Q B, Liu S J, Wang Y T, et al. Super-hydrophobic micro-nano structures on aluminum surface induced by nanosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091406.
杨奇彪, 刘少军, 汪于涛, 等. 纳秒激光诱导铝板表面超疏水微纳结构[J]. 激光与光电子学进展, 2017, 54(9): 091406.

【25】Yang Q B, Deng B, Wang Y T, et al. Superhydrophobic surface of aluminium base induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101408.
杨奇彪, 邓波, 汪于涛, 等.飞秒激光诱导铝基的超疏水表面[J]. 激光与光电子学进展, 2017, 54(10): 101408.

【26】Cao W S, Zhao Y, Wu Y, et al. Super-hydrophobic surface of polytetrafluoroethylene fabricated by picosecond laser and phenomenon of total internal reflection underwater[J]. Chinese Journal of Lasers, 2014, 41(9): 0903008.
曹文深, 赵艳, 吴燕, 等. 皮秒激光制备超疏水聚四氟乙烯表面及其水下全反射研究[J]. 中国激光, 2014, 41(9): 0903008.

【27】Ding J, Zhao Y, Jiang Y J. Fabrication of super-hydrophilic surface of strontium titanate single crystal by using picosecond laser processing[J]. Journal of Optoelectronics·Laser, 2014, 25(9): 1736-1741.
丁杰, 赵艳, 蒋毅坚. 皮秒激光加工制备钛酸锶单晶超亲水表面[J]. 光电子·激光, 2014, 25(9): 1736-1741.

【28】Culpan E A, Rose G. Corrosion behaviour of cast nickel aluminiumbronze in sea water[J]. British Corrosion Journal, 1979, 14(3): 160-166.

【29】Zhang H L. The application of Ni-Al bronze propeller material to naval vessel at home and abroad[J]. Materials for Mechanical Engineering, 1996, 20(1): 33-35,47.
张化龙. 国内外镍铝青铜螺旋桨材料在舰船上的应用[J]. 机械工程材料, 1996, 20(1): 33-35,47.

【30】Sabbaghzadeh B, Parvizi R, Davoodi A, et al. Corrosion evaluation of multi-pass welded nickel-aluminum bronze alloy in 3.5% sodium chloride solution: A restorative application of gas tungsten arc welding process[J]. Materials & Design, 2014, 58(6): 346-356.

【31】Wu Z, Cheng Y F, Liu L, et al. Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze alloy in chloride solution[J]. Corrosion Science, 2015, 98: 260-270.

【32】Schüssler A, Exner H E. The corrosion of nickel-aluminium bronzes in seawater: I. Protective layer formation and the passivation mechanism[J]. Corrosion Science, 1993, 34(11): 1793-1802.

【33】Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobicmetallic surfaces[J]. Langmuir, 2009, 25(8): 4821-4827.

【34】Lehr J, Kietzig A M. Production of homogenous micro-structures by femtosecond laser micro-machining[J]. Optics and Lasers in Engineering, 2014, 57: 121-129.

【35】Feng L B, Che Y H, Liu Y H, et al. One-step immersion method for fabricating superhydrophobic aluminum alloy with excellent corrosion resistance[J]. Surface and Interface Analysis, 2016, 48(12): 1320-1327.

【36】Bizi-Bandoki P, Valette S, Audouard E, et al. Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations[J]. Applied Surface Science, 2013, 273: 399-407.

【37】Long J Y, Zhong M L, Fan P X, et al. Wettability conversion of ultrafast laser structured copper surface[J]. Journal of Laser Applications, 2015, 27(S2): S29107.

引用该论文

Zhang Zebin,Hua Yinqun,Ye Yunxia,Chen Ruifang,Li Zhibao,Yang Jin,Shuai Wenen. Fabrication of Superhydrophobic Nickel-Aluminum Bronze Alloy Surfaces Based on Picosecond Laser Pulses[J]. Chinese Journal of Lasers, 2019, 46(3): 0302013

章泽斌,花银群,叶云霞,陈瑞芳,李志宝,杨进,帅文文. 基于皮秒激光的超疏水镍铝青铜合金表面的制备[J]. 中国激光, 2019, 46(3): 0302013

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF