首页 > 论文 > 中国激光 > 46卷 > 3期(pp:305001--1)

抽运光小尺度自聚焦对基于动态波前调控的径向匀滑效果的影响

Influence of Small-Scale Self-Focusing of Pump Laser on Radial Smoothing Effect Based on Dynamic Wavefront Control

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于抽运光非线性小尺度自聚焦效应, 分析了光克尔介质类型、抽运光光束质量和光克尔介质长度对束匀滑效果的影响。研究结果表明, 在基于动态波前调控的径向匀滑方案中, 当抽运光的峰值强度一定时, 与CS2相比, 采用硝基苯作为光克尔介质可获得较好的束匀滑效果。在实际应用中, 抽运光的小尺度自聚焦效应会随着抽运光峰值强度和光克尔介质长度的增加而加剧, 因此需要合理选择抽运光和光克尔介质参数, 以获得较好的束匀滑效果, 避免抽运光小尺度自聚焦效应的影响。

Abstract

Based on the nonlinear small-scale self-focusing effect of pump laser, the influences of optical Kerr medium type, pump laser beam quality, and optical Kerr medium length on the beam smoothing effect are analyzed. The research results show that in the radial smoothing scheme based on dynamic wavefront control, an excellent beam smoothing effect is obtained with nitrobenzene instead of CS2 as the optical Kerr medium when the pump laser peak intensity is constant. In the practical applications, since the small-scale self-focusing effect of pump laser is aggravated with the increase of pump laser peak intensity or optical Kerr medium length, it is necessary to select suitable parameters of pump laser and optical Kerr medium for a good beam smoothing effect. Thus the influence of small-scale self-focusing effect of pump laser can be avoided.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN24

DOI:10.3788/cjl201946.0305001

所属栏目:光束传输与控制

基金项目:国家重大专项应用基础项目(G2017149, JG2017029, JG2018115)、科技部创新人才推进计划重点领域创新团队资助项目(2014RA4051)

收稿日期:2018-11-22

修改稿日期:2018-12-10

网络出版日期:2018-12-19

作者单位    点击查看

李建龙:四川大学电子信息学院, 四川 成都 610064
翁小凤:四川大学电子信息学院, 四川 成都 610064
钟哲强:四川大学电子信息学院, 四川 成都 610064
张彬:四川大学电子信息学院, 四川 成都 610064

联系人作者:李建龙(2965123511@qq.com); 张彬(zhangbinff@sohu.com);

【1】Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491.

【2】Zhang R, Su J, Hu D, et al. Research of beam smoothing technologies using CPP, SSD, and PS[J]. Proceedings of SPIE, 2015, 9255: 92554B.

【3】Wen S L, Yan H, Zhang Y H, et al. Calculation and experiment of the focal spot caused by continuous phase plate with incident wavefront distortion[J]. Acta Optica Sinica, 2014, 34(3): 0314001.
温圣林, 颜浩, 张远航, 等. 波前畸变下连续相位板焦斑的计算与实验[J]. 光学学报, 2014, 34(3): 0314001.

【4】Desselberger M, Willi O. Measurement and analysis of Rayleigh-Taylor instability in targets driven by incoherent laser radiation[J]. Physics of Fluids B, 1993, 5(3): 896-909.

【5】Smalyuk V A, Boehly T R, Bradley D K, et al. Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets[J]. Physical Review Letters, 1998, 81(24): 5342-5345.

【6】Lehmberg R H, Schmitt A J, Bodner S E. Theory of induced spatial incoherence[J].Journal of Applied Physics, 1987, 62(7): 2680-2701.

【7】Li P, Wang W, Zhao R C, et al. Polarization smoothing design for improving the whole spatial frequency at focal spot[J]. Acta Physica Sinica, 2014, 63(21): 215202.
李平, 王伟, 赵润昌, 等. 基于焦斑空间频率全域优化的偏振匀滑设计[J]. 物理学报, 2014, 63(21): 215202.

【8】Jiang X J, Zhou S L, Lin Z Q. Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion[J]. Journal of Applied Physics, 2007, 101(2): 023109.

【9】Rothenberg J E, Moran B D, Henesian M A, et al. Performance of smoothing by spectral dispersion (SSD) on Beamlet[C]. International Conference on Solid State Lasers for Application, 1997: 313-322.

【10】Rothenberg J E. Two-dimensional beam smoothing by spectral dispersion for direct-drive inertial confinement fusion[J]. Office of Scientific & Technical Information Technical Reports, 1995, 2633: 634-644.

【11】Zhong Z Q, Hou P C, Zhang B. Radial smoothing for improving laser-beam irradiance uniformity[J]. Optics Letters, 2015, 40(24): 5850-5853.

【12】Zhong Z Q, Hou P C, Zhang B. A novel radial beam smoothing scheme based on optical Kerr effect[J].Acta Physica Sinica, 2016, 65(9): 094207.
钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案[J]. 物理学报, 2016, 65(9): 094207.

【13】Li T F, Hou P C, Zhang B. Parameters optimization for radial smoothing based on optical Kerr effect[J]. Acta Optica Sinica, 2016, 36(11): 1114002.
李腾飞, 侯鹏程, 张彬. 基于光克尔效应的径向匀滑方案参数优化[J]. 光学学报, 2016, 36(11): 1114002.

【14】Hou P C, Zhong Z Q, Zhang B. Analysis and optimization of radial smoothing based on optical Kerr effect for irradiation improvement[J]. Optics & Laser Technology, 2016, 85: 48-54.

【15】Weng X F, Li T F, Zhong Z Q, et al. Analysis of illumination uniformity affected by small-scale self-focusing of a pump beam in the radial smoothing scheme[J]. Applied Optics, 2017, 56(32): 8902-8907.

【16】Li T F, Zhong Z Q, Zhang B. Novel dynamic wavefront control scheme for ultra-fast beam smoothing[J].Acta Physica Sinica, 2018, 67(17): 174206.
李腾飞, 钟哲强, 张彬. 用于超快束匀滑的动态波前调控新方案[J]. 物理学报, 2018, 67(17): 174206.

【17】Haynam C A, Wegner P J, Auerbach J M, et al. National ignition facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276-3303.

【18】Zeng S G, Hu J, Wang F, et al. Pulse stacking scheme based on wavelength division multiplexing[J]. Acta Optica Sinica, 2013, 33(5): 0514001.
曾曙光, 胡静, 王飞, 等. 基于波分复用思想的啁啾脉冲堆积方法[J]. 光学学报, 2013, 33(5): 0514001.

【19】Feit M D, Fleck J A, Jr. Self-focusing of broadband laser pulses in dispersive media[R]. Lawrence Livermore National Laboratory, 1992:UCRL-ID-112523.

【20】Fleck J A, Jr, Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Applied Physics, 1976, 10(2): 129-160.

【21】Zhao L, Sui Z, Zhu Q H, et al. Improvement and precision analysis of the split-step Fourier method in solving the general nonlinear Schrdinger equation[J]. Acta Physica Sinica, 2009, 58(7): 4731-4737.
赵磊, 隋展, 朱启华, 等. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析[J]. 物理学报, 2009, 58(7): 4731-4737.

【22】Lawson J K, Auerbach J M, English R E, et al. NIF optical specifications: the importance of the RMS gradient[J]. Proceedings of SPIE, 1999, 3492: 336-343.

【23】Haynam C A, Wegner P J, Auerbach J M, et al. National Ignition Facility laser performance status[J]. Applied Optics, 2007, 46(16):3276-3303.

【24】Ganeev R A, Ryasnyansky A I, Baba M, et al. Nonlinear refraction in CS2[J]. Applied Physics B, 2004, 78(3/4): 433-438.

【25】Kedenburg S, Steinmann A, Hegenbarth R, et al. Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response[J]. Applied Physics B, 2014, 117(3): 803-816.

【26】Bespalov V I, Talanov V I. Filamentary structure of light beams in nonlinear liquids[J]. Soviet Journal of Experimental & Theoretical Physics Letters, 1966, 3(11): 471-476.

引用该论文

Li Jianlong,Weng Xiaofeng,Zhong Zheqiang,Zhang Bin. Influence of Small-Scale Self-Focusing of Pump Laser on Radial Smoothing Effect Based on Dynamic Wavefront Control[J]. Chinese Journal of Lasers, 2019, 46(3): 0305001

李建龙,翁小凤,钟哲强,张彬. 抽运光小尺度自聚焦对基于动态波前调控的径向匀滑效果的影响[J]. 中国激光, 2019, 46(3): 0305001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF