首页 > 论文 > 激光与光电子学进展 > 56卷 > 9期(pp:92401--1)

Ku波段双E结构超薄高效反射型线性极化转换表面

Ultrathin High-Efficiency Reflective Linear Polarization Conversion Surface Using Double-E Structure for Ku-Band

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种利用电磁超表面实现Ku波段(12~18 GHz)的低剖面反射型线性极化转换表面,该表面能对Ku波段的线极化电磁波进行正交极化旋转。给出了极化转换表面的设计原理,并对极化转换表面工作的物理原理进行了解释,通过仿真确定了极化转换表面谐振点的位置。测试结果表明,该线性极化转换表面在工作频带内可以实现80%以上的转换效率,具有转换效率高、尺寸小、厚度薄和结构简单等优点。

Abstract

A low profile linear reflective polarization conversion surface in the Ku band (12-18 GHz) is proposed using a metasurface, which can convert a linearly polarized incident wave into its orthogonal polarization states in the Ku band. The principle of designing such a polarization conversion surface is given. The physical working mechanism of a polarization conversion surface is clarified. The simulation is used to determine the positions of resonance points of the polarization conversion surface. The test results show that the proposed polarization conversion surface has a conversion efficiency of more than 80% within the working band, and has the advantages of high conversion efficiency, small size, small thickness, and simple structure.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O441.4

DOI:10.3788/lop56.092401

所属栏目:表面光学

基金项目:中央引导地方科技发展专项资金(黔科中引地[2018]4009)、贵州省科技计划项目(黔科合平台人才[2017]5788)

收稿日期:2018-10-31

修改稿日期:2018-11-20

网络出版日期:2018-11-27

作者单位    点击查看

张灿:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
余世星:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
龙飞:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
杨晓昆:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
张正平:贵州大学大数据与信息工程学院, 贵州 贵阳 550025

联系人作者:张正平(zpzhang@gzu.edu.cn)

【1】Schurig D, Mock J, Justice B, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

【2】Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966.

【3】Yang B, Cheng H, Chen S Q, et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourie anlysis[J]. Acta Optica Sinica, 2019, 39(1): 0126007.
杨渤, 程化, 陈树琪, 等. 基于傅里叶分析的超表面多维光场调控[J]. 光学学报, 2019, 39(1): 0126007.

【4】Gong B Y, Zhao X P, Pan Z Z, et al. A visible metamaterial fabricated by self-assembly method[J]. Scientific Reports, 2014, 4: 04713.

【5】Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-99.

【6】Cheng Y Z, Nie Y, Gong R Z. Broadband 3D isotropic negative-index metamaterial based on fishnet structure[J]. The European Physical Journal B, 2012, 85: 62.

【7】Liu K T, Liu X, Ge Y H, et al. Generation of OAM vortex beams based on high-efficiency transmission metasurfaces[J]. Acta Optica Sinica, 2019, 39(1): 0126015.
刘凯婷, 刘鑫, 葛悦禾, 等. 基于高效传输型超表面OAM涡旋波束的产生[J]. 光学学报, 2019, 39(1): 0126015.

【8】Li Y H, Zhou L, Zhao G Z. Terahertz broadband polarization converter based on anisotropic metasurface[J]. Chinese Journal of Lasers, 2018, 45(3): 0314001.
李永花, 周璐, 赵国忠. 基于各向异性超表面的太赫兹宽带偏振转换器[J]. 中国激光, 2018, 45(3): 0314001.

【9】Iriarte J C, Pereda A T, de Falcon J L M, et al. Broadband radar cross-section reduction using AMC technology[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6136-6143.

【10】Chen W G, Balanis C A, Birtcher C R. Checkerboard EBG surfaces for wideband radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(6): 2636-2645.

【11】Liu Y, Li K, Jia Y T, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326-331.

【12】Jia Y T, Liu Y, Guo Y J, et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 179-188.

【13】Ghalyon H A, Akbari M, Sebak A. A 30 GHz linear-to-circular polarization conversion using two-layer FSS[C]∥IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017, 978: 671-672.

【14】Ni C, Chen M S, Zhang Z X, et al. Design of frequency-and polarization-reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 78-81.

【15】Feng M D, Wang J F, Ma H, et al. Broadband polarization rotator based on multi-order plasmon resonances and high impedance surfaces[J]. Journal of Applied Physics, 2013, 114(7): 074508.

【16】Chen H Y, Wang J F, Ma H, et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J]. Journal of Applied Physics, 2014, 115(15): 154504.

【17】Mutlu M, Ozbay E. A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling[J]. Applied Physics Letters, 2012, 100(5): 051909.

【18】Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications, 2012, 3: 870.

【19】Kundu D, Mohan A, Chakrabarty A. Ultrathin high-efficiency X-band reflective polarization converter using sunken double arrowhead metasurface[C]∥Proceedings of the Asia-Pacific Microwave Conference, 2016: 16912824.

【20】Liang W, Bockrath M, Bozovic D, et al. Fabry-Perot interference in a nanotube electron waveguide[J]. Nature, 2001, 411(6838): 665-669.

引用该论文

Zhang Can,Yu Shixing,Long Fei,Yang Xiaokun,Zhang Zhengping. Ultrathin High-Efficiency Reflective Linear Polarization Conversion Surface Using Double-E Structure for Ku-Band[J]. Laser & Optoelectronics Progress, 2019, 56(9): 092401

张灿,余世星,龙飞,杨晓昆,张正平. Ku波段双E结构超薄高效反射型线性极化转换表面[J]. 激光与光电子学进展, 2019, 56(9): 092401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF