首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:100003--1)


Research Progress on Preparation of Metallic Materials by Selective Laser Melting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文




Selective laser melting (SLM) is regarded as one of the most important additive manufacturing technologies. Based on the principle of discrete stacking, a high-energy laser beam was used to melt metal powder. Subsequently, the dense three-dimensional bulk materials were formed directly via SLM. SLM has unique advantages in some aspects, such as production of complex parts, short processing time, and low cost, which has been widely used in the preparation of various alloy-based materials. This paper reviews the research status and the existing problems in producing aluminum-, titanium-, nickel-, and iron-based materials via SLM at home and abroad. The possible future research directions of SLM in the preparation of metallic materials are also prospected.









作者单位    点击查看

张家莲:武汉科技大学省部共建耐火材料与冶金国家重点实验室, 湖北 武汉 430081
李发亮:武汉科技大学省部共建耐火材料与冶金国家重点实验室, 湖北 武汉 430081
张海军:武汉科技大学省部共建耐火材料与冶金国家重点实验室, 湖北 武汉 430081

联系人作者:李发亮(lfliang@wust.edu.cn); 张家莲(15272512465@163.com);

【1】Utela B, Storti D, Anderson R, et al. A review of process development steps for new material systems in three dimensional printing(3DP)[J]. Journal of Manufacturing Processes, 2008, 10(2): 96-104.

【2】Mohamed O A, Masood S H, Bhowmik J L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects[J]. Advances in Manufacturing, 2015, 3(1): 42-53.

【3】Shao Z K, Jiang Y L. Key technologies of SLA 3D printing[J]. Mechanical & Electrical Engineering Magazine, 2015, 32(2): 180-184.
邵中魁, 姜耀林. 光固化3D打印关键技术研究[J]. 机电工程, 2015, 32(2): 180-184.

【4】Zhou R Y, Shuai M B, Jiang C. Research progress in additive manufacturing technology of ceramic material[J]. Materials Review, 2016, 30(1): 67-72.
周汝垚, 帅茂兵, 蒋驰. 陶瓷材料增材制造技术研究进展[J]. 材料导报, 2016, 30(1): 67-72.

【5】Yin H, Bai P K, Liu B, et al. Present situation and development trend of selective laser melting technology for metal powder[J]. Hot Working Technology, 2010, 39(1): 140-144.
尹华, 白培康, 刘斌, 等. 金属粉末选区激光熔化技术的研究现状及其发展趋势[J]. 热加工工艺, 2010, 39(1): 140-144.

【6】Wei Q S, Wang L, Zhang S, et al. Study on the effects of powder properties on the performance of stainless steel parts produced by selective laser melting[J]. Electromachining & Mould, 2011(4): 52-56.
魏青松, 王黎, 张升, 等. 粉末特性对选择性激光熔化成形不锈钢零件性能的影响研究[J]. 电加工与模具, 2011(4): 52-56.

【7】Wang L, Wei Q S, He W T, et al. Influence of powder characteristic and process parameters on SLM formability[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(6): 20-23.
王黎, 魏青松, 贺文婷, 等. 粉末特性与工艺参数对SLM成形的影响[J]. 华中科技大学学报(自然科学版), 2012, 40(6): 20-23.

【8】Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2015, 2(4): 0411101.

【9】Calignano F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting[J]. Materials & Design, 2014, 64: 203-213.

【10】Kanagarajah P, Brenne F, Niendorf T, et al. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading[J]. Materials Science & Engineering A: Structural Materials Properties Microstructure & Processing, 2013, 588(5): 188-195.

【11】Yadroitsev I, Smurov I. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape[J]. Physics Procedia, 2010, 5: 551-560.

【12】Hu Z H, Zhu H H, Zhang H, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 2017, 87: 17-25.

【13】Wei K W, Wang Z M, Zeng X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Materials Letters, 2015, 156: 187-190.

【14】Dai D H, Gu D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. International Journal of Machine Tools and Manufacture, 2015, 88: 95-107.

【15】Gu D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.

【16】Dai D H, Gu D D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments[J]. Materials & Design, 2014, 55: 482-491.

【17】Lavernia E J, Srivatsan T S. The rapid solidification processing of materials: science, principles, technology, advances, and applications[J]. Journal of Materials Science, 2010, 45(2): 287-325.

【18】Bartkowiak K, Ullrich S, Frick T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 2011, 12: 393-401.

【19】Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.

【20】Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011402.
朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55(1): 011402.

【21】Aboulkhair N T, Tuck C, Ashcroft I, et al. On the precipitation hardening of selective laser melted AlSi10Mg[J]. Metallurgical and Materials Transactions A, 2015, 46(8): 3337-3341.

【22】Sing S L, Yeong W Y, Wiria F E. Selective laser melting of titanium alloy with 50wt% tantalum: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2016, 660: 461-470.

【23】Krakhmalev P, Yadroitsev I. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures[J]. Intermetallics, 2014, 46: 147-155.

【24】Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders[J]. Rapid Prototyping Journal, 2010, 16(6): 450-459.

【25】Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treament[J]. Chinese Journal of Lasers, 2017, 44(9): 0902001.
肖振楠, 刘婷婷, 廖文和, 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能[J]. 中国激光, 2017, 44(9): 0902001.

【26】Pan A Q, Zhang H, Wang Z M. Molten pool microstructure of Ni-based single crystal superalloys fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071402.
潘爱琼, 张辉, 王泽敏. 选区激光熔化镍基单晶高温合金的熔池显微组织[J]. 激光与光电子学进展, 2017, 54(7): 071402.

【27】Sufiiarov V S, Popovich A A, Borisov E V, et al. Selective laser melting of heat-resistant Ni-based alloy[J]. Non-Ferrous Metals, 2015, 2015(1): 32-35.

【28】Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 2017, 17(1): 63-71.

【29】Demir A G, Previtali B. Multi-material selective laser melting of Fe/Al-12Si components[J]. Manufacturing Letters, 2017, 11: 8-11.

【30】Sun Z J, Tan X P, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting[J]. NPG Asia Materials, 2018, 10(4): 127-136.

【31】Sansoni G, Docchio F. Three-dimensional optical measurements and reverse engineering for automotive applications[J]. Robotics and Computer-Integrated Manufacturing, 2004, 20(5): 359-367.

【32】Ghany K A, Moustafa S F. Comparison between the products of four RPM systems for metals[J]. Rapid Prototyping Journal, 2006, 12(2): 86-94.

【33】Raja V, Zhang S J, Garside J, et al. Rapid and cost-effective manufacturing of high-integrity aerospace components[J]. The International Journal of Advanced Manufacturing Technology, 2006, 27(7/8): 759-773.

【34】Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment[J]. Materials Science and Engineering: A, 2014, 590: 153-160.

【35】Zou Y T, Wei Z Y, Du J, et al. Effect and optimization of processing parameters on relative density of AlSi10Mg alloy parts by selective laser melting[J]. Applied Laser, 2016, 36(6): 656-662.
邹亚桐, 魏正英, 杜军, 等. AlSi10Mg激光选区熔化成形工艺参数对致密度的影响与优化[J]. 应用激光, 2016, 36(6): 656-662.

【36】Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34: 159-169.

【37】Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 2017, 53(8): 918-926.
张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.

【38】Deng X H, Yang Z J. Current situation and prospect of titanium alloy additive manufacturing technology[J]. Development and Application of Materials, 2014, 29(5): 113-120.
邓贤辉, 杨治军. 钛合金增材制造技术研究现状及展望[J]. 材料开发与应用, 2014, 29(5): 113-120.

【39】Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

【40】Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance[J]. Acta Materialia, 2017, 125: 390-400.

【41】Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3190-3199.

【42】Ali H, Ma L, Ghadbeigi H, et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V[J]. Materials Science and Engineering: A, 2017, 695: 211-220.

【43】Zuo W, Zhang Q M, Lei Y, et al. Mechanical properties of selective laser melted and shaped K4202 nickel-based superalloy at room temperature[J]. Journal of Rocket Propulsion, 2017, 43(3): 53-58.
左蔚, 张权明, 雷玥, 等. K4202镍基高温合金激光选区熔化成形室温拉伸性能研究[J]. 火箭推进, 2017, 43(3): 53-58.

【44】Vilaro T, Colin C, Bartout J D, et al. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy[J]. Materials Science and Engineering: A, 2012, 534: 446-451.

【45】Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting[J]. Powder Technology, 2017, 310: 60-66.

【46】Zhang Y, Gu D D, Shen L D, et al. Study on selective laser melting additive manufacturing process of INCONEL Ni-based superalloy[J]. Electromachining & Mould, 2014(4): 38-43.
张颖, 顾冬冬, 沈理达, 等. INCONEL系镍基高温合金选区激光熔化增材制造工艺研究[J]. 电加工与模具, 2014(4): 38-43.

【47】Li Y, Chen C J, Wang X N, et al. Study on the process and properties of biomedical 316L porous stainless steel prepared by selective laser melting technique[J]. Applied Laser, 2015, 35(3): 319-323.
李洋, 陈长军, 王晓南, 等. 选区激光熔化技术制备316L多孔不锈钢工艺及性能研究[J]. 应用激光, 2015, 35(3): 319-323.

【48】Sun T T, Yang Y Q, Su X B, et al. Research of densification of 316L stainless steel powder in selective laser melting process[J]. Laser Technology, 2010, 34(4): 443-446.
孙婷婷, 杨永强, 苏旭彬, 等. 316L不锈钢粉末选区激光熔化成型致密化研究[J]. 激光技术, 2010, 34(4): 443-446.

【49】Yin Y, Liu P Y, Lu C, et al. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. Electric Welding Machine, 2017, 47(9): 69-74.
尹燕, 刘鹏宇, 路超, 等. 选区激光熔化成型316L不锈钢微观组织及拉伸性能分析[J]. 电焊机, 2017, 47(9): 69-74.

【50】Chen S, Tao F H, Jia C Z, et al. Research on selective laser melting forming process and property of H13 die steel[J]. Hot Working Technology, 2017, 46(10): 162-165.
陈帅, 陶凤和, 贾长治, 等. H13模具钢选区激光熔化成型工艺及其性能研究[J]. 热加工工艺, 2017, 46(10): 162-165.


Zhang Jialian,Li Faliang,Zhang Haijun. Research Progress on Preparation of Metallic Materials by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2019, 56(10): 100003

张家莲,李发亮,张海军. 选区激光熔化技术制备金属材料研究进展[J]. 激光与光电子学进展, 2019, 56(10): 100003


【1】陈帅,陶凤和,贾长治. 选区激光熔化成形4Cr5MoSiV1钢回火处理后显微组织和力学性能. 中国激光, 2019, 46(10): 1002005--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF