首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101002--1)

基于高斯衰减的自适应线性变换去雾算法

Adaptive Linear Transformation Image Dehazing Algorithm Based on Gaussian Attenuation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于高斯衰减的自适应线性变换图像去雾算法。建立有雾图像与无雾图像最小值通道之间的线性变换模型,利用有雾图像最小值通道构造高斯函数以自适应补偿估计图像明亮区域的透射率,提升透射率的准确度。根据大气散射模型复原图像,使用交叉双边滤波器消除透射率纹理效应。实验结果表明,所提算法能有效地改善图像明亮区域的色彩失真,消除景深边缘Halo效应,所复原的图像具有明显的细节和适宜的饱和度。

Abstract

An adaptive linear transformation image dehazing algorithm based on Gaussian attenuation is proposed. A linear transformation model between the minimum channel of hazy images and that of haze-free images is established. A Gaussian function using the minimum channel of hazy images is constructed to adaptively compensate the transmissivity in the bright region and improve the accuracy of transmissivity. A cross-bilateral filter is used to eliminate the texture effects of transmission, and the image is restored by the atmospheric scattering model. The experimental results show that the proposed algorithm can effectively improve color distortion in the bright regions of images and eliminate the Halo effect at the edge of depth of field. Moreover, the restored image possesses obvious details and suitable saturation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop56.101002

所属栏目:图像处理

基金项目:国家自然科学基金(61561030)、甘肃省财政厅基本科研业务费(214138)、兰州交通大学教改项目(160012)

收稿日期:2018-10-17

修改稿日期:2018-12-05

网络出版日期:2018-12-13

作者单位    点击查看

姜沛沛:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
杨燕:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070

联系人作者:杨燕(yangyantd@mail.lzjtu.cn)

【1】Dai S B, Xu W,Piao Y J, et al. Remote sensing image defogging based on dark channel prior[J]. Acta Optica Sinica, 2017, 37(3): 0328002.
代书博, 徐伟, 朴永杰, 等. 基于暗原色先验的遥感图像去雾方法[J]. 光学学报, 2017, 37(3): 0328002.

【2】Wang W C, Yuan X H. Recent advances in image dehazing[J]. CAA Journal of Automatica Sinica, 2017, 4(3): 410-436.

【3】Kim J Y, Kim L S, Hwang S H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(4): 475-484.

【4】Yang A P, Bai H H. Nighttime image defogging based on the theory of Retinex and dark channel prior[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041002.
杨爱萍, 白煌煌. 基于Retinex理论和暗通道先验的夜间图像去雾算法[J]. 激光与光电子学进展, 2017, 54(4): 041002.

【5】He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.

【6】Meng G F, Wang Y, Duan J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]∥IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 2013: 617-624.

【7】Sun W, Wang H, Sun C H, et al. Fast single image haze removal via local atmospheric light veil estimation[J]. Computers & Electrical Engineering, 2015, 46: 371-383.

【8】Yang Y, Zhang G Q, Li Y F, et al. Adaptive gaussian attenuation defogging algorithm based on edge preservation[J]. Laser & Optoelectronics Progress, 2018, 55(8) :081004.
杨燕, 张国强, 李一菲, 等. 基于边缘保持的自适应高斯衰减去雾算法[J]. 激光与光电子学进展, 2018, 55(8): 081004.

【9】Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533.

【10】Wang W C, Yuan X H, Wu X J, et al. Fast image dehazing method based on linear transformation[J]. IEEE Transactions on Multimedia, 2017, 19(6): 1142-1155.

【11】Cai B L, Xu X M, Jia K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.

【12】Ren W Q, Liu S, Zhang H, et al. Single image dehazing via multi-scale convolutional neural networks[C]∥Leibe B, Matas J, Sebe N, et al. Computer Vision – ECCV 2016. Cham: Springer, 2016, 9906: 154-169.

【13】Guo H, Xu X T, Li B. Study on image dehazing methods based on dark channel prior[J]. Acta Optica Sinica, 2018, 38(4): 0410002.
郭翰, 徐晓婷, 李博. 基于暗原色先验的图像去雾方法研究[J]. 光学学报, 2018, 38(4): 0410002.

【14】Yang Y, Chen G K. Single image visibility restoration using optical compensation and pixel-by-pixel transmission estimation[J].Journal on Communications, 2017, 38(5): 48-56.
杨燕, 陈高科. 基于光补偿和逐像素透射率的图像复原算法[J]. 通信学报, 2017, 38(5): 48-56.

【15】Sulami M, Glatzer I, Fattal R, et al. Automatic recovery of the atmospheric light in hazy images[C]∥IEEE International Conference on Computational Photography(ICCP), May 2-4, 2014, Santa Clara, CA, USA. New York: IEEE, 2014: 1-11.

【16】Kim J H, Jang W D, Sim J Y, et al. Optimized contrast enhancement for real-time image and video dehazing[J]. Journal of Visual Communication and Image Representation, 2013, 24(3): 410-425.

【17】Liu K, Bi D Y, Wang S P, et al. Single image dehazing based on sparse feature extraction[J]. Acta Optica Sinica, 2018, 38(3): 0310001.
刘坤, 毕笃彦, 王世平, 等. 基于稀疏特征提取的单幅图像去雾[J]. 光学学报, 2018, 38(3): 0310001.

【18】Hautière N, Tarel J P, Aubert D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis & Stereology, 2011, 27(2): 87.

引用该论文

Jiang Peipei,Yang Yan. Adaptive Linear Transformation Image Dehazing Algorithm Based on Gaussian Attenuation[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101002

姜沛沛,杨燕. 基于高斯衰减的自适应线性变换去雾算法[J]. 激光与光电子学进展, 2019, 56(10): 101002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF