首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101006--1)

非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合

Image Fusion Based on Fuzzy Logic Combined with Adaptive Pulse Coupled Neural Network in Nonsubsampled Contourlet Transform Domain

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统的基于多尺度变换的图像融合存在对比度不高、边缘细节等信息保留不理想的问题,为解决此问题,提出了一种基于非下采样Contourlet变换的自适应模糊逻辑和自适应脉冲耦合神经网络(PCNN)的融合算法。对于低频子带方向,采用基于自适应模糊逻辑的融合规则;对于高频子带方向,采用方向信息自适应地调整PCNN的链接强度,以边缘特征作为输入激励自适应PCNN,再根据脉冲点火幅度融合子带系数。实验结果表明,所提融合算法能较好地突出融合图像的目标信息,提供丰富的背景细节,在融合图像的清晰度和人眼视觉方面取得较好的融合效果。

Abstract

Traditional image fusion based on multi-scale transform experiences problems such as low contrast and edge details. A fusion algorithm based on the adaptive fuzzy logic and an adaptive pulse coupled neural network (PCNN) is proposed in the nonsubsampled contourlet transform domain. For the low-frequency sub-band, the fusion is based on the adaptive fuzzy logic. For the high-frequency sub-band, the information about orientation is adaptively utilized as the linking strength of the PCNN and the edge features of the source images are adopted as the input to motivate the adaptive PCNN. Then, the sub-band coefficient is fused according to the pulse ignition amplitude. The experimental results indicate that the proposed fusion algorithm can better highlight the target information of the fusion image, provide richer background details, and achieve a better fusion effect both on the clarity of fusion images and the human vision.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop56.101006

所属栏目:图像处理

基金项目:长江学者和创新团队发展计划(IRT_16R36)、国家自然科学基金(61562057,61162016,61462059)

收稿日期:2018-10-22

修改稿日期:2018-11-14

网络出版日期:2018-12-21

作者单位    点击查看

王艳:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
杨艳春:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
党建武:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
王阳萍:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070

联系人作者:杨艳春(yangyanchun102@sina.com)

【1】Wang Y M, Chen D M, Zhao G B. Image fusion algorithm of infrared and visible images based on target extraction and laplace transformation[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011002.
汪玉美, 陈代梅, 赵根保. 基于目标提取与拉普拉斯变换的红外和可见光图像融合算法[J]. 激光与光电子学进展, 2017, 54(1): 011002.

【2】Wu D P, Bi D Y, He L Y, et al. A fusion algorithm of infrared and visible image based on NSSCT[J]. Acta Optica Sinica, 2017, 37(7): 0710003.
吴冬鹏, 毕笃彦, 何林远, 等. 基于NSSCT的红外与可见光图像融合[J]. 光学学报, 2017, 37(7): 0710003.

【3】Wang Z J,Ziou D, Armenakis C, et al. A comparative analysis of image fusion methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1391-1402.

【4】Yang Y T. Research on image fusion based on nonsubsampled contourlet transform[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012: 23-37.
杨粤涛. 基于非采样Contourlet变换的图像融合[D]. 北京: 中国科学院研究生院, 2012: 23-37.

【5】Zhang K, Li X Z. An image fusion method based on regional correlation for high resolution remote sensing images[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(6): 889-895.
张凯, 李绪志. 基于区域相关性的高分辨率遥感图像融合算法[J]. 计算机辅助设计与图形学学报, 2014, 26(6): 889-895.

【6】Li H, Manjunath B S, Mitra S K. Multi-sensor image fusion using the wavelet transform[C]//Proceedings of 1st International Conference on Image Processing, November 13-16, 1994, Austin, TX, USA. New York: IEEE, 1994: 51-55.

【7】Do M N, Vetterli M. Thecontourlet transform: An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.

【8】Da C H, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.

【9】Li X E, Ren J Y, Lü Z M, et al. Fusion method of multispectral and panchromatic images based on improved PCNN and region energy in NSCT domain[J]. Infrared and Laser Engineering, 2013, 42(11): 3096-3102.
李新娥, 任建岳, 吕增明, 等. NSCT域内基于改进PCNN和区域能量的多光谱和全色图像融合方法[J]. 红外与激光工程, 2013, 42(11): 3096-3102.

【10】Tong T, Yang G, Meng Q Q, et al. Multi-sensor image fusion algorithm based on edge feature[J]. Infrared and Laser Engineering, 2014, 43(1): 311-317.
童涛, 杨桄, 孟强强, 等. 基于边缘特征的多传感器图像融合算法[J]. 红外与激光工程, 2014, 43(1): 311-317.

【11】Li M L, Li Y J, Wang H M, et al. Fusion algorithm of infrared and visible images based on NSCT and PCNN[J]. Opto-Electronic Engineering, 2010, 37(6): 90-95.
李美丽, 李言俊, 王红梅, 等. 基于NSCT和PCNN的红外与可见光图像融合方法[J]. 光电工程, 2010, 37(6): 90-95.

【12】Wang H P, Liu Z Q, Fang X, et al. Method for image fusion based on adaptive pulse coupled neural network in curvelet domain[J]. Journal of Optoelectronics·Laser, 2016, 27(4): 429-436.
王昊鹏, 刘泽乾, 方兴, 等. Curvelet域自适应脉冲耦合神经网络的图像融合方法[J]. 光电子·激光, 2016, 27(4): 429-436.

【13】Li C F. Study on the method of lung CT image processing based on fuzzy mathematics[D]. Shanghai: University of Shanghai for Science and Technology, 2012.
李翠芳. 基于模糊数学的肺部CT图像处理方法的研究[D]. 上海: 上海理工大学, 2012.

【14】Huang X Q. Infrared and visible image fusion technology based on fuzzy logic[D]. Chongqing: Chongqing University, 2012: 20-50.
黄晓青. 基于模糊逻辑的红外与可见光图像融合技术[D]. 重庆: 重庆大学, 2012: 20-50.

【15】Pan Y, Zhao X L. Fusion of gaussian fuzzy logic on NSST domain[J]. Applied Laser, 2016, 36(3): 351-356.
潘贇, 赵喜玲. NSST域高斯模糊逻辑的图像融合[J]. 应用激光, 2016, 36(3): 351-356.

【16】Ge W, Ji P C, Zhao T C. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. Laser Technology, 2016, 40(6): 892-896.
葛雯, 姬鹏冲, 赵天臣. NSST域模糊逻辑的红外与可见光图像融合[J]. 激光技术, 2016, 40(6): 892-896.

【17】Tan H P, Gong Q G, Liu M, et al. Infrared image enhancement algorithm based on NSST and fuzzy membership[J]. Laser Journal, 2017, 38(7): 88-93.
谭海佩, 巩青歌, 刘曼, 等. 基于NSST和模糊隶属度的红外图像增强算法[J]. 激光杂志, 2017, 38(7): 88-93.

【18】Monica S M, Sahoo S K. Pulse coupled neural networks and its applications[J]. Expert Systems with Applications, 2014, 41(8): 3965-3974.

【19】Miao Q G, Wang B S. A novel image fusion algorithm based on local contrast and adaptive PCNN[J]. Chinese Journal of Computers, 2009, 31(5): 875-880.

【20】Wu Z H. The digital image processing based on fuzzy theory[D]. Changsha: Changsha University of Science and Technology, 2010: 22-36.
吴振华. 基于模糊数学理论的数字图像处理[D]. 长沙: 长沙理工大学, 2010: 22-36.

【21】Zheng Y J, Ren X Y, Liu X J, et al. Image fusion based on NSCT and fuzzy logic[J]. Computer Engineering and Applications, 2011, 47(11): 171-174, 218.
郑义军, 任仙怡, 刘秀坚, 等. 基于NSCT与模糊逻辑的图像融合方法[J]. 计算机工程与应用, 2011, 47(11): 171-174, 218.

【22】Liu X H, Chen Z B. Fusion of infrared and visible images based onmulti-scale directional guided filter and convolutional sparse representation[J]. Acta Optica Sinica, 2017, 37(11): 1110004.
刘先红, 陈志斌. 基于多尺度方向引导滤波和卷积稀疏表示的红外与可见光图像融合[J]. 光学学报, 2017, 37(11): 1110004.

【23】Cai X, Han G, Xiao S L. An image registration method based on similarity of edge information[C]//2012 IEEE International Symposium on Industrial Electronics, May 28-31, 2012, Hang Zhou, China. New York: IEEE, 2012: 1111-1115.

【24】Chai Y, Li H F, Guo M Y. Multifocus image fusion scheme based on features of multiscale products and PCNN in lifting stationary wavelet domain[J]. Optics Communications, 2011, 284(5): 1146-1158.

【25】Chai Y, Li H F, Qu J F. Image fusion scheme using a novel dual-channel PCNN in lifting stationary wavelet domain[J]. Optics Communications, 2010, 283(19): 3591-3602.

【26】Wang Z B, Wang S, Zhu Y. Multi-focus image fusion based on the improved PCNN and guided filter[J]. Neural Processing Letters, 2017, 45(1): 75-94.

引用该论文

Wang Yan,Yang Yanchun,Dang Jianwu,Wang Yangping. Image Fusion Based on Fuzzy Logic Combined with Adaptive Pulse Coupled Neural Network in Nonsubsampled Contourlet Transform Domain[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101006

王艳,杨艳春,党建武,王阳萍. 非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合[J]. 激光与光电子学进展, 2019, 56(10): 101006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF