首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101003--1)

基于光谱分析和动态分形维数的高光谱遥感图像云检测

Hyperspectral Remote Sensing Image Cloud Detection Based on Spectral Analysis and Dynamic Fractal Dimension

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于光谱反射特性,研究了多种背景下的快速云检测方法。将光谱反射特性与云的纹理特性相结合,提出了基于动态分形维数和辐射量特性相结合的云检测综合算法。以EO-1卫星Hyperion传感器拍摄的高光谱遥感图像为例,研究了不同下垫面的含云遥感图像,并检测与分析了厚云区和薄云区。对比遥感图像云检测的两种算法,所提算法可以更加精确地识别薄云区,极大地提高了遥感图像云检测精度,同时又可满足星载高光谱图像快速云检测的要求。

Abstract

The rapid cloud detection method in various backgrounds is studied based on the spectral reflection characteristics. The spectral reflection characteristics are combined with the texture features of the clouds, and a comprehensive cloud detection algorithm is proposed based on the combination of dynamic fractal dimension and radiation quantity characteristics. The hyperspectral remote sensing images taken by the Hyperion sensor of the EO-1 satellite are taken as examples to study the cloud-containing remote sensing images of different underlying surfaces, and the thick clouds area and thin clouds area are detected and analyzed. Compared with the two algorithms of remote sensing image cloud detection, the proposed algorithm can identify the thin cloud regions more accurately, which can greatly improve the accuracy of remote sensing image cloud detection and at the same time can meet the requirements of fast cloud detection of satellite-borne hyperspectral images.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P237

DOI:10.3788/lop56.101003

所属栏目:图像处理

基金项目:国家自然科学基金(61671408)、教育部联合基金(6141A02022314)、上海航天科技创新基金(SAST2015033)

收稿日期:2018-10-23

修改稿日期:2018-11-07

网络出版日期:2018-12-13

作者单位    点击查看

徐冬宇:浙江大学电气工程学院, 浙江 杭州 310027
厉小润:浙江大学电气工程学院, 浙江 杭州 310027
赵辽英:杭州电子科技大学计算机应用技术研究所, 浙江 杭州 310018
舒锐:上海卫星工程研究所, 上海 200240
唐琪佳:上海卫星工程研究所, 上海 200240

联系人作者:厉小润(lxr@zju.edu.cn)

【1】Chen Z W, Zhang G, Ning J S, et al. An automatic cloud detection method for ZY-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(3): 292-300.
陈振炜, 张过, 宁津生, 等. 资源三号测绘卫星自动云检测[J]. 测绘学报, 2015, 44(3): 292-300.

【2】Jiang X H, Wang X H, Ye H H, et al. Research on cloud pollution processing method of satellite data in CO2 Inversion [J]. Acta Optica Sinica, 2015, 35(8): 0801001.
江新华, 王先华, 叶函函, 等. CO2反演中卫星数据的云污染处理方法研究[J]. 光学学报, 2015, 35(8): 0801001.

【3】Ding H Y, Ma L L, Li Z Y, et al. Automatic identification of cloud and snow based on fractal dimension[J]. Remote Sensing Technology and Application, 2013, 28(1): 52-57.
丁海燕, 马灵玲, 李子扬, 等. 基于分形维数的全色影像云雪自动识别方法[J]. 遥感技术与应用, 2013, 28(1): 52-57.

【4】Solvsteen C. Correlation-based cloud detection and an examination of the split-window method[J]. Proceedings of SPIE, 1995, 2586: 86-97.

【5】Tao S P, Jin G, Zhang G X, et al. A wavelet SCM algorithm used to detect cloud in remote sensing cameras[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5): 598-603.
陶淑苹, 金光, 张贵祥, 等. 实现遥感相机自主辨云的小波SCM算法[J]. 测绘学报, 2011,40(5): 598-603.

【6】Shan N, Zheng T Y, Wang Z S.High-speed and high-accuracy algorithm for cloud detection and its application[J]. Journal of Remote Sensing, 2009, 13(6): 1138-1155.
单娜, 郑天垚, 王贞松. 快速高准确度云检测算法及其应用[J]. 遥感学报, 2009, 13(6): 1138-1155.

【7】Wu J L. Cloud detection algorithm for domestic high-resolution multispectral image data[J]. Computer & Network, 2015, 41(14): 45-48.
吴金亮. 国产高分多光谱数据的自动云检测[J]. 计算机与网络, 2015, 41(14): 45-48.

【8】Gao X J, Wan Y C, Zheng S Y, et al. Real-time automatic cloud detection during the process of taking aerial photographs[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1909-1913.
高贤君, 万幼川, 郑顺义, 等. 航空摄影过程中云的实时自动检测[J]. 光谱学与光谱分析, 2014, 34(7): 1909-1913.

【9】Feng S Y, Zhang N, Shen J, et al. Method of cloud detection with hyperspectral remote sensing image based on the reflective characteristics[J]. Chinese Journal of Optics, 2015, 8(2): 198-204.
冯书谊, 张宁, 沈霁, 等. 基于反射率特性的高光谱遥感图像云检测方法研究[J]. 中国光学, 2015, 8(2): 198-204.

【10】Rees W G. Measurement of thefractal dimension of ice-sheet surfaces using Landsat data[J]. International Journal of Remote Sensing, 1992, 13(4): 663-671.

【11】Yu W X, Cao X G, Xu L, et al. Remote sensing image cloud automatic detection[J]. Chinese Journal of Scientific Instrument, 2006, 27(6): 2184-2186.
郁文霞, 曹晓光, 徐琳, 等. 遥感图像云自动检测[J].仪器仪表学报, 2006, 27(6): 2184-2186.

【12】Liu X H, Cao X G, Yu W X. Cloud detection algorithm based on fractal dimension[C]∥2006 Remote Sensing Technology Forum and China Remote Sensing Application Association 2006 Annual Meeting, August 12, 2006. Taiyuan: China Remote Sensing Application Association, 2006: 549-553.
刘湘航, 曹晓光, 郁文霞. 基于分形维数的云检测算法[C]∥2006遥感科技论坛暨中国遥感应用协会2006年年会, 2006-08-12. 太原: 中国遥感应用协会, 2006: 549-553.

【13】Sarkar N, Chaudhuri B B. An efficient approach to estimate fractal dimension of textural images[J]. Pattern Recognition, 1992, 25(9): 1035-1041.

【14】Chen Y, Fan R S, Wang J X, et al. Cloud detection of ZY-3 satellite remote sensing images based on deep learning[J]. Acta Optica Sinica, 2018, 38(1): 0128005.
陈洋, 范荣双, 王竞雪, 等. 基于深度学习的资源三号卫星遥感影像云检测方法[J]. 光学学报, 2018, 38(1): 0128005.

【15】Xia Y, Cui S C, Yang S Z. Cloud detection method for high resolution satelliteimage based on multi-dimensional features[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(6): 465-473.
夏雨, 崔生成, 杨世植. 综合高分卫星图像多维特征的云检测方法[J]. 大气与环境光学学报, 2017, 12(6): 465-473.

【16】Kang Y F, Pan L, Sun M W, et al. Gaussian mixture model based cloud detection for Chinese high resolution satellite imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 782-788.
康一飞, 潘励, 孙明伟, 等. 基于高斯混合模型法的国产高分辨率卫星影像云检测[J]. 武汉大学学报(信息科学版), 2017, 42(6): 782-788.

【17】Liu H. Research on infrared hyper-spectral clear channel detection used in variational assimilation method[D]. Changsha: National University of Defense Technology, 2014.
刘航. 红外高光谱晴空通道云检测在变分同化中的应用研究[D]. 长沙: 国防科学技术大学, 2014.

【18】Guo H L, He M Y, Du H D, et al. Study of cloud detection method for infrared hyper-spectraldata[J]. Infrared, 2014, 35(2): 26-32.
郭海龙, 何明元, 杜华栋, 等. 红外高光谱资料云检测方法研究[J]. 红外, 2014, 35(2): 26-32.

【19】Lyu M M, Han L J, Tian S F, et al. Cloud detection under varied surfaces and atmospheric conditions with MODIS imagery[J]. Journal of Remote Sensing, 2016, 20(6): 1371-1380.
吕明明, 韩立建, 田淑芳,等. 多样地表和大气状况下的MODIS数据云检测[J]. 遥感学报, 2016, 20(6): 1371-1380.

【20】Hou S W, Sun W F, Zheng X S. Overview of cloud detection methods in remote sensing images[J]. Space Electronic Technology, 2014, 11(3): 68-76, 86.
侯舒维, 孙文方, 郑小松. 遥感图像云检测方法综述[J]. 空间电子技术, 2014,11(3): 68-76, 86.

【21】Liu B, Deng J, Song Y, et al. High-resolution remote sensing image cloud detection based on convolutional neural network[J]. Geospatial Information, 2017, 15(11): 12-15.
刘波, 邓娟, 宋杨, 等.基于卷积神经网络的高分辨率遥感影像云检测[J]. 地理空间信息, 2017, 15(11): 12-15.

【22】Liu Z H, Han L, Zhou P, et al. A method for cloud interpretation in ZY-3 satellite imagery and its application[J]. Remote Sensing Information, 2017, 32(4): 41-46.
刘志恒, 韩玲, 周平, 等. 一种资源三号卫星影像的云量判读方法与应用[J]. 遥感信息, 2017, 32(4): 41-46.

【23】Li S H, Sun X J, Zhang R W, et al. Cloud determination of radiosonde data and its statistical study[J]. Journal of the Meteorological Sciences, 2017, 37(3): 403-408.
李绍辉, 孙学金, 张日伟, 等. 探空资料云检测及其统计研究[J]. 气象科学, 2017, 37(3): 403-408.

【24】Song M Z, Qu H S, Tao S P, et al. Research of cloud detection algorithm of panchromatic remote sensing images at sub-meter level[J]. Journal of Optoelectronics·Laser, 2017, 28(7): 742-750.
宋明珠, 曲宏松, 陶淑苹,等. 亚米级全色遥感影像云地检测算法研究[J]. 光电子·激光, 2017,28(7): 742-750.

【25】Sun S R. A multi-spectral remote sensing imagery cloud detection algorithm based on spectral angle principle[J]. Microcomputer & its Applications, 2017, 36(6): 16-18, 21.
孙舜蓉. 一种基于光谱角原理的多光谱遥感图像云检测算法[J]. 微型机与应用, 2017, 36(6): 16-18, 21.

【26】Zhou X J, Yang X F, Yao X Z.The study of cloud classification and detection in remote sensing image[J]. Journal of Graphics, 2014, 35(5): 768-773.
周雪珺, 杨晓非, 姚行中. 遥感图像的云分类和云检测技术研究[J]. 图学学报, 2014, 35(5): 768-773.

引用该论文

Xu Dongyu,Li Xiaorun,Zhao Liaoying,Shu Rui,Tang Qijia. Hyperspectral Remote Sensing Image Cloud Detection Based on Spectral Analysis and Dynamic Fractal Dimension[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101003

徐冬宇,厉小润,赵辽英,舒锐,唐琪佳. 基于光谱分析和动态分形维数的高光谱遥感图像云检测[J]. 激光与光电子学进展, 2019, 56(10): 101003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF