首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101004--1)

基于生成式对抗网络的细小桥梁裂缝分割方法

Method for Small-Bridge-Crack Segmentation Based on Generative Adversarial Network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于生成式对抗网络的细小桥梁裂缝分割方法。该方法在判别器结构中引入分割分支,将生成式对抗网络与语义分割网络合二为一,兼具超分辨率图像重建功能与分割功能。在处理细小桥梁裂缝分割问题时,该方法先将低分辨率的细小桥梁裂缝图像转换为超分辨率的粗大型桥梁裂缝图像,再对转换后的超分辨率图像进行分割。实验结果表明,该方法更容易识别出细小桥梁裂缝并实现准确分割,与传统的分割方法相比,该方法的分割召回率提高了6%,平均交并比提高了10%。

Abstract

For cracks in small bridges, a segmentation method is proposed based on a generative adversarial network. This method introduces a segmental branch into the discriminator structure and combines the generative confrontation network with the semantic segmentation network. In addition, the method is capable of super-resolution image reconstruction and segmentation. To solve the problem of small-bridge-crack segmentation, this method transforms low-resolution small-bridge-crack images into super-resolution coarse-bridge-crack images, which are then segmented. The experimental results show that the proposed method facilitates the identification of small-bridge-crack and its segmentation is accurate. Compared with the traditional segmentation method, the recall rate and mean intersection over union of this method are improved by 6% and 10%, respectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.9

DOI:10.3788/lop56.101004

所属栏目:图像处理

基金项目:国家自然科学基金(61573232,61401263)

收稿日期:2018-10-31

修改稿日期:2018-12-04

网络出版日期:2018-12-13

作者单位    点击查看

李良福:陕西师范大学计算机科学学院, 陕西 西安 710119
胡敏:陕西师范大学计算机科学学院, 陕西 西安 710119

联系人作者:胡敏(longford@xjtu.edu.cn)

【1】Pang X R, Wang D P. Oblique crack monitoring of concrete beam with macro FBG strain sensor[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120603.
庞香润, 王大鹏. FBG宏应变传感器的混凝土梁斜裂缝监测[J]. 激光与光电子学进展, 2017, 54(12): 120603.

【2】Qu L, Wang K R, Chen L L, et al. Fast road detection based on RGBD images and convolutional neural network[J]. Acta Optica Sinica, 2017, 37(10): 1010003.
曲磊, 王康如, 陈利利, 等. 基于RGBD图像和卷积神经网络的快速道路检测[J]. 光学学报, 2017, 37(10): 1010003.

【3】Wang B, Wang X, Chen F, et al. Pavement crack recognition based on aerial image[J]. Acta Optica Sinica, 2017, 37(8): 0810004.
王博, 王霞, 陈飞, 等. 航拍图像的路面裂缝识别[J]. 光学学报, 2017, 37(8): 0810004.

【4】Li Q Q, Liu X L. Novel approach to pavement image segmentation based on neighboring difference histogram method[C]∥2008 Congress on Image and Signal Processing, May 27-30, 2008, Sanya, Hainan, China. New York: IEEE, 2008: 792-796.

【5】Landstrom A, Thurley M J. Morphology-based crack detection for steelslabs[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(7): 866-875.

【6】Lu Y Y, Lu C W, Tang C K. Onlinevideo object detection using association LSTM[C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE, 2017: 2363-2371.

【7】Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE, 2017: 2999-3007.

【8】Huang C, Chen P, Yang X, et al. REDBEE: A visual-inertial drone system for real-time moving object detection[C]∥2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 24-28, 2017, Vancouver, BC, Canada. New York: IEEE, 2017: 1725-1731.

【9】Zhao S S, He N.Road surface crack detection based on CNN[J]. Transducer and Microsystem Technologies, 2017, 36(11): 135-138.
赵珊珊, 何宁. 基于卷积神经网络的路面裂缝检测[J]. 传感器与微系统, 2017, 36(11): 135-138.

【10】Jégou S, Drozdzal M, Vazquez D, et al. The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 1175-1183.

【11】Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.

【12】Bell S, Zitnick C L,Bala K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 2874-2883.

【13】Benenson R, Omran M, Hosang J, et al. Ten years of pedestrian detection, what have we learned?[C]∥European Conference on Computer Vision, September 6-7 and 12, 2014, Zurich, Switzerland. Switzerland AG: Springer International Publishing, 2014: 613-627.

【14】Zhang C, Chen Y. Object detection based on hard examples mining using residual network[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101003.
张超, 陈莹. 残差网络下基于困难样本挖掘的目标检测[J].激光与光电子学进展, 2018, 55(10): 101003.

【15】Chen X Z, Kundu K, Zhu Y K, et al. 3d object proposals for accurate object class detection[C]∥Proceedings of Advances in Neural Information Processing Systems 28 (NIPS 2015), December 7-12, 2015, Montreal, Canada. San Francisco: Margan Kaufmann, 2015: 424-432.

【16】Zhu J W, Liu W H, Yin J F, et al. Infrared small target regions detection based on improved image complexity[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101006.
朱婧文, 刘文好, 印剑飞, 等. 基于改进复杂度的红外弱小目标区域检测算法[J].激光与光电子学进展, 2018, 55(10): 101006.

【17】Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥European conference on computer vision. Springer, October 11-14, 2016, Amsterdam, The Netherlands. Switzerland AG: Springer International Publishing, 2016: 21-37.

【18】Yang F, Choi W, Lin Y Q. Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 2129-2137.

【19】He K M, Zhang X Y, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9): 1904-1916.

【20】Li H X, Lin Z, Shen X H, et al. A convolutional neural network cascade for face detection[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 5325-5334.

【21】Wu Y H, Liu Y L, Li J M, et al. Traffic sign detection based on convolutional neural networks[C]∥The 2013 International Joint Conference on Neural Networks (IJCNN), August 4-9, 2013, Dallas, TX, USA. New York: IEEE, 2013: 1-7.

【22】Goodfellow L J, Pouget A J, Mirza M, et al. Generative adversarial nets[C]// Proceedings of Advances in Neural Information Processing Systems 27 (NIPS 2014), December 8-13, 2014, Montreal, Canada. San Francisco: Margan Kaufmann, 2014: 2672-2680.

【23】Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 105-114.

【24】Tsai Y H, Hung W C, Schulter S, et al. Learning to adapt structured output space for semantic segmentation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 7472-7481.

【25】Simon J, Michal D, David V, et al. The one hundred layers tiramisu: fully convolutional denseNets for semantic segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 1175-1183.

【26】Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 6230-6239.

引用该论文

Li Liangfu,Hu Min. Method for Small-Bridge-Crack Segmentation Based on Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101004

李良福,胡敏. 基于生成式对抗网络的细小桥梁裂缝分割方法[J]. 激光与光电子学进展, 2019, 56(10): 101004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF