首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101401--1)

基于选区激光熔化的316L不锈钢的裂纹形成规律及机理

Crack Formation Law and Mechanism in Selective Laser Melting of 316L Stainless Steels

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用选区激光熔化(SLM)技术制备了316L不锈钢,分析了激光功率、扫描速度和扫描间距与成形件裂纹的变化规律,研究了裂纹形貌、化学成分、析出相种类和晶粒尺寸,获得了不同位置处裂纹的组织结构和形成机理。结果表明,裂纹主要为微孔聚集形裂纹、气泡聚集形裂纹和热裂纹。随着线能量密度的增大,微孔聚集形裂纹和气泡聚集形裂纹数目先增加后减少,热裂纹单向逐渐增多。优化工艺参数(线能量密度为222.2 J/m, 激光功率为200 W, 激光扫描速率为900 mm/s)下,获得了无裂纹、无气泡、少量孔隙的成形件。

Abstract

Selective laser melting (SLM) is used to prepare 316L stainless steels. Further, the effects of laser power, scanning speed, and scanning spacing on the formation of cracks are studied in detail, the morphologies, chemical compositions, types of the precipitated phases, and grain sizes of the cracks are discussed, and the microstructures and formation mechanism of the cracks at different positions are presented. The results denote that the cracks mainly include micropore aggregation cracks, bubble aggregation cracks, and hot cracks. With the increase of linear energy density, the numbers of micropore aggregation cracks and bubble aggregation cracks are observed to initial increase and subsequent decrease; however, the number of hot cracks is observed to unidirectional increase. Under the optimal process parameters (a linear energy density of 222.2 J/m, a laser power of 200 W, and a laser scanning speed of 900 mm/s), the samples containing a small number of pores but no lacking cracks and no bubbles are obtained.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop56.101401

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51704001)、安徽省重点研究与开发项目(1704a0902056)、安徽省高校自然科学研究重点(大)项目(KJ2018A0864)

收稿日期:2018-11-03

修改稿日期:2018-11-26

网络出版日期:2018-12-12

作者单位    点击查看

潘露:安徽机电职业技术学院机械工程系, 安徽 芜湖 241002安徽拓宝增材制造科技有限公司, 安徽 芜湖 241300
张成林:安徽拓宝增材制造科技有限公司, 安徽 芜湖 241300
王亮:安徽拓宝增材制造科技有限公司, 安徽 芜湖 241300
刘麒慧:安徽拓宝增材制造科技有限公司, 安徽 芜湖 241300
王刚:安徽工程大学机械与汽车工程学院, 安徽 芜湖 241000

联系人作者:潘露(ahjdpanlu@126.com)

【1】Wu W H, Zhang L, He B B, et al. Current status of research on computer simulation of selective laser melting additive manufacturing process[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2016, 52(10): 693-697.
吴文恒, 张亮, 何贝贝, 等. 选择性激光熔化增材制造工艺过程模拟研究现状[J]. 理化检验(物理分册), 2016, 52(10): 693-697.

【2】Yang Y Q, Luo Z Y, Su X B, et al. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(1): 0103001.
杨永强, 罗子艺, 苏旭彬, 等. 不锈钢薄壁零件选区激光熔化制造及影响因素研究[J]. 中国激光, 2011, 38(1): 0103001.

【3】Zhang X B, Dang X A, Yang L J. Study on balling phenomena in selective laser melting[J]. Laser & Optoelectronics Progress, 2014, 51(6): 061401.
张晓博, 党新安, 杨立军. 选择性激光熔化成形过程的球化反应研究[J]. 激光与光电子学进展, 2014, 51(6): 061401.

【4】Wang P, Huang Z H, Qi W J, et al. Effect of the 3D printing process parameters based on SLM technology on the structural defect of 316 stainless steel[J]. Welding Digest of Machinery Manufacturing, 2016(2): 2-7.
王沛, 黄正华, 戚文军, 等. 基于SLM技术的3D打印工艺参数对316不锈钢组织缺陷的影响[D]. 机械制造文摘: 焊接分册, 2016(2): 2-7.

【5】Chen J, Lin X, Wang T, et al. The hot cracking mechanism of 316L stainless steel cladding in rapid laser forming process[J]. Rare Metal Materials and Engineering, 2003, 32(3): 183-186.
陈静, 林鑫, 王涛, 等. 316L不锈钢激光快速成形过程中熔覆层的热裂机理[J]. 稀有金属材料与工程, 2003, 32(3): 183-186.

【6】Zhang J, Li S, Wei Q S, et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting[J]. Chinese Journal of Rare Metals, 2015, 39(11): 961-966.
张洁, 李帅, 魏青松, 等. 激光选区熔化Inconel 625合金开裂行为及抑制研究[J]. 稀有金属, 2015, 39(11): 961-966.

【7】Zhang S, Gui R Z, Wei Q S, et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 2013, 49(23): 21-27.
张升, 桂睿智, 魏青松, 等. 选择性激光熔化成形TC4钛合金开裂行为及其机理研究[J]. 机械工程学报, 2013, 49(23): 21-27.

【8】Liu Y H, Qu W C, Zhu X G, et al. Causes analysis on root cracks of TC4 titanium alloy parts formed by laser 3D printing[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2016, 52(10): 682-685.
刘延辉, 瞿伟成, 朱小刚, 等. 激光3D打印TC4钛合金工件根部裂纹成因分析[J]. 理化检验(物理分册), 2016, 52(10): 682-685.

【9】Song C H, Yang Y Q, Wang Y D, et al. Research on process and property of CoCrMo alloy directly manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2014, 41(6): 0603001.
宋长辉, 杨永强, 王赟达, 等. CoCrMo合金激光选区熔化成型工艺及其性能研究[J]. 中国激光, 2014, 41(6): 0603001.

【10】Wang M Y, Zhu H H, Qi T, et al. Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J]. Laser Technology, 2016, 40(2): 219-222.
王梦瑶, 朱海红, 祁婷, 等. 选区激光熔化成形Al-Si合金及其裂纹形成机制研究[J]. 激光技术, 2016, 40(2): 219-222.

【11】Gebhardt A, Schmidt F M, Htter J S, et al. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry[J]. Physics Procedia, 2010, 5: 543-549.

【12】Jing G Y, Wei K W, Wang Z M, et al. Microstructure and mechanical property of S-04 steel by selective laser melting[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111404.
靖冠乙, 魏恺文, 王泽敏, 等. 激光选区熔化成形S-04钢的组织及性能[J]. 激光与光电子学进展, 2016, 53(11): 111404.

【13】Pan L,Wang L,Wang G. Effect of linear energy density on defects of 316L stainless steel by selective laser melting[J]. Applied Laser, 2019, 39(1): 15-21.
潘露, 王亮, 王刚. 线能量密度对选区激光熔化制备316L不锈钢缺陷的影响[J]. 应用激光, 2019, 39(1): 15-21.

【14】Atzeni E, Iuliano L, Minetola P, et al. Proposal of an innovative benchmark for accuracy evaluation of dental crown manufacturing[J]. Computers in Biology and Medicine, 2012, 42(5): 548-555.

【15】Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069.

【16】Wang D. Study on the fabrication properties and process of stainless steel parts by selective laser melting[D]. Guangzhou: South China University of Technology, 2011.
王迪. 选区激光熔化成型不锈钢零件特性与工艺研究[D]. 广州: 华南理工大学, 2011.

【17】Li R D. Research on the key basic issues in selective laser melting of metallic powder[D]. Wuhan: Huazhong University of Science and Technology, 2010.
李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究[D]. 武汉: 华中科技大学, 2010.

【18】Man D H, Wang L F. Weldhot cracking causes and preventive measures of austenitic stainless steel[J]. Hot Working Technology, 2012, 41(11): 181-184.
满达虎, 王丽芳. 奥氏体不锈钢焊接热裂纹的成因及防止对策[J]. 热加工工艺, 2012, 41(11): 181-184.

【19】Chen R,Yu G, He X L, et al. Effect of sulfur diffusion in 38MnVS6 steel on morphology and microstructure of laser cladding layers[J]. Chinese Journal of Lasers, 2018, 45(6): 0602005.
陈茹, 虞钢, 何秀丽, 等. 38MnVS6钢中硫元素扩散对激光熔覆涂层形貌和组织的影响[J]. 中国激光, 2018, 45(6): 0602005.

【20】Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011402.
朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55(1): 011402.

【21】Wu W H, Yang Y Q, Wang H W, et al. Research on direct rapid manufacturing of 316L fine metal part using fiber laser[J]. Laser Technology, 2009, 33(5): 486-489.
吴伟辉, 杨永强, 王红卫, 等. 光纤激光直接快速成型316L不锈钢精密零件研究[J]. 激光技术, 2009, 33(5): 486-489.

引用该论文

Pan Lu,Zhang Chenglin,Wang Liang,Liu Qihui,Wang Gang. Crack Formation Law and Mechanism in Selective Laser Melting of 316L Stainless Steels[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101401

潘露,张成林,王亮,刘麒慧,王刚. 基于选区激光熔化的316L不锈钢的裂纹形成规律及机理[J]. 激光与光电子学进展, 2019, 56(10): 101401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF