首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101501--1)

特征权值与尺度自适应的核相关跟踪算法

Feature-Weight and Scale Adaptive Algorithm for Kernel Correlation Tracking

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种特征权值与尺度自适应的核相关跟踪算法。提取目标搜索区域的方向梯度直方图(HOG)特征和颜色名(CN)特征进行自适应权值融合,通过融合特征的相关滤波响应图的峰值找到目标位置;利用权值较大特征的相关滤波响应图的峰值和峰值旁瓣比的乘积作为尺度评估依据,对目标尺度进行粗略估计和精确估计,从而得到目标的最佳尺度。通过在目标跟踪标准(OTB-2013)数据集上的仿真实验,结果表明相比核相关滤波跟踪算法以及其他5种跟踪算法,所提算法在跟踪精度和成功率方面都有明显提高,跟踪精度为0.799,成功率为0.723,能较好地适应目标尺度的变化。

Abstract

A kernel correlation tracking algorithm exhibiting feature-weight and scale adaptation is proposed. The histogram of oriented gradient (HOG) and the color name (CN) features of the target search area are extracted for performing adaptive weight fusion, and the target position is estimated using the peak value of the correlation filter response map of the fusion feature. Further, using the product of the peak value of the correlation filter response map and the peak sidelobe ratio of the large weighted feature as the basis for scale estimation, the rough and accurate estimations of the target scale are performed and utilized to obtain the optimal scale of the target. The results of the simulation experiments performed using the object tracking benchmark (OTB-2013) dataset show that the proposed algorithm exhibits obvious improvements in terms of tracking precision and success rate compared with other five tracking algorithms. The tracking precision and success rate obtained using the proposed algorithm are 0.799 and 0.723, respectively. Furthermore, the proposed algorithm can well adapt to the change of target scale.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop56.101501

所属栏目:机器视觉

基金项目:国家自然科学基金(61573168)、中央高校基本科研业务费专项资金(JUSRP51733B)

收稿日期:2018-11-13

修改稿日期:2018-12-10

网络出版日期:2018-12-20

作者单位    点击查看

朱宏基:江南大学物联网工程学院, 江苏 无锡 214122
于凤芹:江南大学物联网工程学院, 江苏 无锡 214122

联系人作者:朱宏基(zhu_hongji_purpose@163.com)

【1】Smeulders A W M,Chu D M,Cucchiara R, et al. Visual tracking: an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.

【2】Lu H C, Li P X, Wang D. Visual object tracking: a survey[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61-76.
卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61-76.

【3】Ge B Y, Zuo X Z, Hu Y J. Review of visual object tracking technology[J]. Journal of Image and Graphics, 2018, 23(8): 1091-1107.
葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8): 1091- 1107.

【4】Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1/2/3): 125-141.

【5】Kwon J, Lee K M. Visual tracking decomposition[C]∥2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA. New York: IEEE, 2010: 1269-1276.

【6】Liao X F, Hou Z Q, Yu W S, et al. A scale adapted tracking algorithm based on kernelized correlation[J]. Acta Optica Sinica, 2018, 38(7): 0715002.
廖秀峰, 侯志强, 余旺盛, 等. 基于核相关的尺度自适应视觉跟踪[J]. 光学学报, 2018, 38(7): 0715002.

【7】Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels[C]∥2011 International Conference on Computer Vision, November 6-13, 2011, Barcelona, Spain. New York: IEEE, 2011: 263-270.

【8】Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.

【9】Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[M]∥Henriques J F, Caseiro R, Martins P, et al. Computer Vision-ECCV 2012. Berlin, Heidelberg: Springer-Verlag, 2012: 702-715.

【10】Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 2014: 1090-1097.

【11】Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.

【12】Pan Z F, Zhu Y L. Kernelized correlation filters object tracking method with multi-scale estimation[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101501.
潘振福, 朱永利. 多尺度估计的核相关滤波器目标跟踪方法[J]. 激光与光电子学进展, 2016, 53(10): 101501.

【13】Li Y, Zhu J K. AScale adaptive kernel correlation filter tracker with feature integration[M]∥Li Y, Zhu J K. Computer Vision-ECCV 2014 Workshops. Cham: Springer International Publishing, 2015: 254-265.

【14】Li C, Lu C Y,Zhao X, et al. Scale adaptive correlation filtering tracing algorithm based on feature fusion[J]. Acta Optica Sinica, 2018, 38(5): 0515001.
李聪, 鹿存跃, 赵珣, 等. 特征融合的尺度自适应相关滤波跟踪算法[J]. 光学学报, 2018, 38(5): 0515001.

【15】Montero A S, Lang J, Laganière R. Scalable kernel correlation filter with sparse feature integration[C]∥2015 IEEE International Conference on Computer Vision Workshop (ICCVW), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2015: 587-594.

【16】Akin O, Erdem E, Erdem A, et al. Deformable part-based tracking by coupled global and local correlation filters[J]. Journal of Visual Communication and Image Representation, 2016, 38: 763-774.

【17】Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 2013: 2411-2418.

引用该论文

Zhu Hongji,Yu Fengqin. Feature-Weight and Scale Adaptive Algorithm for Kernel Correlation Tracking[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101501

朱宏基,于凤芹. 特征权值与尺度自适应的核相关跟踪算法[J]. 激光与光电子学进展, 2019, 56(10): 101501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF