首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:100901--1)

基于高速数字全息的燃烧生物质颗粒测试

Measurement of Burning Biomass Particles via High-Speed Digital Holography

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

搭建了基于高速数字全息的燃烧颗粒测试系统。通过对全息图进行处理,观察了竹粉颗粒形貌变化和颗粒破碎等现象;验证了对颗粒三维轨迹追踪的可行性;比较了燃烧前后颗粒粒径分布和速度分布。重建结果展示了各种不同形貌竹粉颗粒的清晰图像。统计结果表明,燃烧后的小颗粒(粒径小于30 μm)数量增多,大颗粒(粒径大于50 μm)数量减少;径向速度分布范围变大;轴向速度整体增大,并出现双峰分布,与观察结果吻合较好。

Abstract

In this study, a high-speed digital holographic system is established for measuring the amount of burning particles. After processing the hologram, the evolution of the morphology and the fragmentation of bamboo powder are observed. Further, the ability of the system to track the three-dimensional trajectories of particles is validated. The size and speed distributions of the particles before and after combustion are compared, and the reconstruction results display high-quality images of bamboo powders having various morphologies. The statistical results denote that the number of small particles (diameter<30 μm) increases, whereas that of the big particles (diameter>50 μm) decreases after combustion. Subsequently, the distribution range of the radial speed of the particles is extended, and the axial speed denotes an overall increase with a bimodal distribution. The statistical results are observed to agree very well with the direct observations.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TK16

DOI:10.3788/lop56.100901

所属栏目:全息

基金项目:国家自然科学基金(91741129)、国家自然科学基金重大项目(51390491)、国家自然科学基金创新研究群体项目(51621005)

收稿日期:2018-11-16

修改稿日期:2018-12-07

网络出版日期:2018-12-13

作者单位    点击查看

姚龙超:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
吴学成:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
林小丹:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
吴迎春:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
陈玲红:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
高翔:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
岑可法:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027

联系人作者:吴学成(wuxch@zju.edu.cn)

【1】Katz J, Sheng J. Applications of holography in fluid mechanics and particle dynamics[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 531-555.

【2】Lü Q N, Chen Y L, Yuan R, et al. Trajectory and velocity measurement of a particle in spray by digital holography[J]. Applied Optics, 2009, 48(36): 7000-7007.

【3】Yang Y, Li G Y, Tang L L, et al. Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography[J]. Applied Optics, 2012, 51(2): 255-267.

【4】Wu Y C. Digital particle holography for 3D measurement and its applications[D]. Hangzhou: Zhejiang University, 2014.
吴迎春. 数字颗粒全息三维测量技术及其应用[D]. 杭州: 浙江大学, 2014.

【5】Wu X C, Yao L C, Wu Y C, et al. In-situ characterization of coal particle combustion via long working distance digital in-line holography[J]. Energy & Fuels, 2018, 32(8): 8277-8286.

【6】Wu X C, Xue Z L, Zhao H F, et al. Measurement of slurry droplets by digital holographic microscopy: fundamental research[J]. Fuel, 2015, 158: 697-704.

【7】Fugal J P, Shaw R A. Cloud particle size distributions measured with an airborne digital in-line holographic instrument[J]. Atmospheric Measurement Techniques, 2009, 2(1): 259-271.

【8】Liu H P, Yu J, Wang T, et al. Digital holographic three-dimensional sensing and imaging for aquatic species[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020901.
刘惠萍, 于佳, 王添, 等. 水下微生物的三维数字全息探测[J]. 激光与光电子学进展, 2014, 51(2): 020901.

【9】Choi Y S, Lee S J. Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy[J]. Applied Optics, 2009, 48(16): 2983-2990.

【10】Wu Y C, Wu X C, Wang Z H, et al. Measurement of microchannel flow with digital holographic microscopy by integrated nearest neighbor and cross-correlation particle pairing[J]. Applied Optics, 2011, 50(34): H297-H305.

【11】Yu X, Hong J, Liu C G, et al. Review of digital holographic microscopy for three-dimensional profiling and tracking[J]. Optical Engineering, 2014, 53(11): 112306.

【12】Yao L C, Chen J, Sojka P E, et al. Three-dimensional dynamic measurement of irregular stringy objects via digital holography[J]. Optics Letters, 2018, 43(6): 1283-1286.

【13】Zeng Y N, Lu J S, Liu Y, et al. Three-dimensional displacement tracking technique of particle based on digital holographic microscopy[J]. Chinese Journal of Lasers, 2017, 44(12): 1204001
曾雅楠, 卢钧胜, 刘源, 等. 基于数字全息显微的微粒三维位移跟踪测量技术[J]. 中国激光, 2017, 44(12): 1204001.

【14】Liu Z Q, Luo Z X, Ye Y, et al. Differences between 4f lenses system and single lens in particle field in-line holography[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020901.
刘振清, 罗振雄, 叶雁, 等. 粒子场同轴全息中4f光学透镜组与单透镜的区别[J]. 激光与光电子学进展, 2018, 55(2): 020901.

【15】Zhang L Y, Xu Q, Cao N, et al. Effect of the size of high-pass filter on the off-axis particle holographic image[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060901.
张连永, 徐青, 曹娜, 等. 高通滤波器尺寸对粒子离轴滤波全息像的影响[J]. 激光与光电子学进展, 2017, 54(6): 060901.

【16】Trolinger J D, Heap M P. Coal particle combustion studied by holography[J]. Applied Optics, 1979, 18(11): 1757-1762.

【17】Samuelsen G S, Trolinger J D, Heap M P, et al. Observation of the behavior of coal particles during thermal decomposition[J]. Combustion and Flame, 1981, 40: 7-12.

【18】Guildenbecher D R, Cooper M A, Gill W, et al. Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography[J]. Optics Letters, 2014, 39(17): 5126-5129.

【19】Wu Y C, Yao L C, Wu X C, et al. 3D imaging of individual burning char and volatile plume in a pulverized coal flame with digital inline holography[J]. Fuel, 2017, 206: 429-436.

【20】Yao L C, Wu C Y, Wu Y C, et al. Investigating particle and volatile evolution during pulverized coal combustion using high-speed digital in-line holography[J]. Proceedings of the Combustion Institute, 2019, 37(3): 2911-2918.

【21】Wu Y C, Brunel M, Li R X, et al. Simultaneous amplitude and phase contrast imaging of burning fuel particle and flame with digital inline holography: model and verification[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 199: 26-35.

【22】Guildenbecher D R, Hoffmeister K N G, Kunzler W M, et al. Phase conjugate digital inline holography (PCDIH)[J]. Optics Letters, 2018, 43(4): 803-806.

【23】Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues[J]. Progress in Energy and Combustion Science, 2005, 31(2): 171-192.

【24】Khatami R, Stivers C, Joshi K, et al. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres[J]. Combustion and Flame, 2012, 159(3): 1253-1271.

【25】Goodman J W.Introduction to Fourier optics[M]. New York: McGraw Hill. 1996.

【26】Wu Y C, Wu X C, Yang J, et al. Wavelet-based depth-of-field extension, accurate autofocusing and particle pairing for digital inline particle holography[J]. Applied Optics, 2014, 53(4): 556-564.

【27】Gao J. Development and applications of digital holography to particle field measurement and in vivo biological imaging[D]. West Lafayette: Purdue University, 2014.

引用该论文

Yao Longchao,Wu Xuecheng,Lin Xiaodan,Wu Yingchun,Chen Linghong,Gao Xiang,Cen Kefa. Measurement of Burning Biomass Particles via High-Speed Digital Holography[J]. Laser & Optoelectronics Progress, 2019, 56(10): 100901

姚龙超,吴学成,林小丹,吴迎春,陈玲红,高翔,岑可法. 基于高速数字全息的燃烧生物质颗粒测试[J]. 激光与光电子学进展, 2019, 56(10): 100901

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF