首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101201--1)

紧凑型彩虹折射仪的开发与实验测试

Development and Experimental Test of Compact Rainbow Refractometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种基于全场彩虹测量技术的紧凑型彩虹折射仪。该折射仪采用笼式结构和全密封设计,光路的整体尺寸明显小于传统的彩虹光路,折射仪的尺寸为0.42 m×0.42 m×0.15 m。使用该彩虹折射仪对单组分液滴折射率、双组分液滴浓度进行了一系列实验测试。采用去离子水喷雾测试了折射仪的折射率测量精度,测量误差约为2×10-4。测量了体积分数为0~100%的乙醇液滴的折射率,与文献数据进行了对比,并分析了误差来源。结果表明,所研发的紧凑式折射仪具有测量液滴折射率的功能,以及体积小、精度高的优点,适用于工业生产环境,在喷雾场测量中具有很好的应用前景。

Abstract

In this study, a compact rainbow refractometer is developed based on the global rainbow technology. This refractometer adopts a cage structure and a completely sealed design. The overall size of the refractometer, exhibiting a length, width, and height of 0.42, 0.42, and 0.15 m, respectively, is obviously smaller than those of the traditional refractometers. Further, the performance of the rainbow refractometer is validated by the experimental measurement of the refractive index of a single-component droplet, the concentration of a two-component droplet, and the droplet temperature. The accuracy of the refractive index measured using the rainbow refractometer is verified using a deionized water spray, and the measurement error is observed to be approximately 2×10-4. The refractive indices of the water-ethanol droplets with volume fractions from 0 to 100% are measured and compared with the values in the literature, and the error sources are analyzed. The results denote that the developed compact refractometer exhibits a unique function of measuring the refractive indices of droplets; additionally, the compact refractometer possesses the advantages of small volume and high accuracy. Furthermore, it is applicable to industrial environments and exhibits a good application prospect in the measurement of spray fields.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH741

DOI:10.3788/lop56.101201

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(51576177,91741129)、 国家自然科学基金创新研究群体项目(51621005)

收稿日期:2018-11-16

修改稿日期:2018-12-04

网络出版日期:2018-12-07

作者单位    点击查看

曹建政:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
李灿:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
吴迎春:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
吴学成:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
陈玲红:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
邱坤赞:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
岑可法:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027

联系人作者:吴迎春(wuxch@zju.edu.cn); 吴学成(wycgsp@zju.edu.cn);

【1】Roth N, Anders K, Frohn A. Refractive-index measurements for the correction of particle sizing methods[J]. Applied Optics, 1991, 30(33): 4960-4965.

【2】van Beeck J P A J, Giannoulis D, Zimmer L, et al. Global rainbow thermometry for droplet-temperature measurement[J]. Optics Letters, 1999, 24(23): 1696-1698.

【3】Wu X C, Jiang H Y, Wu Y C, et al. One-dimensional rainbow the rmometry system by using slit apertures[J]. Optics Letters, 2014, 39(3): 638-641.

【4】Wu Y C, Promvongsa J, Saengkaew S, et al. Phase rainbow refractometry for accurate droplet variation characterization[J]. Optics Letters, 2016, 41(20): 4672-4675.

【5】Vetrano M R, van Beeck J P A J, Riethmuller M L. Generalization of the rainbow Airy theory to nonuniform spheres[J]. Optics Letters, 2005, 30(6): 658-60.

【6】Vetrano M R, Gauthier S, van Beeck J P A J, et al. Characterization of a non-isothermal water spray by global rainbow thermometry[J]. Experiments in Fluids, 2006, 40(1): 15-22.

【7】Vetrano M R, van Beeck J P A J, Riethmuller M L. Global rainbow thermometry: improvements in the data inversion algorithm and validation technique in liquid-liquid suspension[J]. Applied Optics, 2004, 43(18): 3600-3607.

【8】Promvongsa J, Wu Y C, Grehan1 G, et al. One-dimensional rainbow technique to characterize the evaporation at ambient temperature and evaporation in a flame of monodispersed droplets[C/OL]∥Proceeding of the European Combustion Meeting, 2015: 1-5. [2018-10-25]. http:∥www.ecm2015.hu/papers/P3-12.pdf.

【9】Letty C, Renou B, Reveillon J, et al. Experimental study of droplet temperature in a two-phase heptane/air V-flame[J]. Combustion and Flame, 2013, 160(9): 1803-1811.

【10】Verdier A, Marrero Santiago J, Vandel A, et al. Experimental study of local flame structures and fuel droplet properties of a spray jet flame[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2595-2602.

【11】Song F H, Xu C L, Wang S M, et al. Measurement of temperature gradient in a heated liquid cylinder using rainbow refractometry assisted with infrared thermometry[J]. Optics Communications, 2016, 380: 179-185.

【12】Wilms J, Weigand B. Composition measurements of binary mixture droplets by rainbow refractometry[J]. Applied Optics, 2007, 46(11): 2109-2118.

【13】Yu H T, Xu F, Tropea C. Spheroidal droplet measurements based on generalized rainbow patterns[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 126: 105-112.

【14】Yu H T, Xu F, Tropea C. Optical caustics associated with the primary rainbow of oblate droplets: simulation and application in non-sphericity measurement[J]. Optics Express, 2013, 21(22): 25761.

【15】Pan Q, Zhang Z J. Experimental validation of non-sphericity effect on monochromatic rainbow measurement[J]. Proceedings of SPIE, 2013, 8759: 875940.

【16】Han Y P, Méès L, Ren K F, et al. Scattering of light by spheroids: the far field case[J]. Optics Communications, 2002, 210(1/2): 1-9.

【17】Wu X C, Li C, Cao K L, et al. Instrumentation of rainbow refractometry: portable design and performance testing[J]. Laser Physics, 2018, 28(8): 085604.

【18】Wu X C, Cen K F, Wang Z H, et al. One-dimensional global rainbow measurement device and measurement method: US20150177065[P]. 2015-06-25.

【19】Wu X C, Cen K F, Jiang H Y, et al. Self-calibrating global rainbow measurement device based on dual-wavelength scattering angle:. CN204789239U[P]. 2015-11-18.
吴学成, 岑可法, 姜淏予, 等. 基于双波长的散射角自标定全场彩虹测量装置: CN204789239U[P]. 2015-11-18.

【20】Wu X C, Cen K F, Qiu K Z, et al. A compact global rainbow measuring probe: CN106124369A[P]. 2016-11-16.
吴学成, 岑可法, 邱坤赞, 等. 一种紧凑式全场彩虹测量探头: CN106124369A[P]. 2016-11-16.

【21】Wu X C, Cen K F, Jiang H Y, et al. Global rainbow measurement method and device based on dual-wavelength scattering angle self-calibration: CN105043946A[P]. 2015-11-11.
吴学成, 岑可法, 姜淏予, 等. 基于双波长的散射角自标定全场彩虹测量方法及装置: CN105043946A[P]. 2015-11-11.

【22】Wu X C, Cen K F, Chen L H. Method and device for on-line measurement of liquid spray by global rainbow: CN103698256A[P]. 2014-04-02.
吴学成, 岑可法, 陈玲红. 一种全场彩虹在线测量液体喷雾的方法和装置: CN103698256A [P]. 2014-04-02.

【23】Wu Y C, Wu X C, Saengkaewi S, et al. Concentration and size measurements of sprays with global rainbow technique[J]. Acta Physica Sinica, 2013, 62(9): 090703.
吴迎春, 吴学成, Sawitree Saengkaew, 等. 全场彩虹技术测量喷雾浓度及粒径分布[J]. 物理学报, 2013, 62(9): 090703.

【24】Song F H, Yang P J, Xu C L, et al. An improved Global Rainbow Refractometry for spray droplets characterization based on five-point method and optimization process[J]. Flow Measurement and Instrumentation, 2014, 40: 223-231.

【25】Polyanskiy M N. Refractive index database[OL]. [2018-10-25]. https:∥refractiveindex.info.

【26】Refractometer[OL]. [2018-10-25]. http:∥www.refractometer.pl/refractiondatasheet-ethanol.

引用该论文

Cao Jianzheng,Li Can,Wu Yingchun,Wu Xuecheng,Chen Linghong,Qiu Kunzan,Cen Kefa. Development and Experimental Test of Compact Rainbow Refractometer[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101201

曹建政,李灿,吴迎春,吴学成,陈玲红,邱坤赞,岑可法. 紧凑型彩虹折射仪的开发与实验测试[J]. 激光与光电子学进展, 2019, 56(10): 101201

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF