首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:102801--1)

三维成像激光雷达高带宽数据采集与存储系统

High-Band width Data Acquisition and Storage System for Three-Dimensional Imaging Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了三维成像激光雷达高带宽数据采集与存储系统。为保证系统存储的实时性,通过PCIE 3.0 (peripheral component interface express 3.0)将数据传输到计算机,将回波数据存储到固态硬盘(SSD)大容量盘阵中。针对系统中多片模数转换器(ADCs)采样数据不同步问题,提出了高速信号同步触发电路及现场可编程逻辑门阵列(FPGA)固有路径延迟校准算法。为了精确测量激光雷达内光路触发脉冲与系统时钟之间的延时量,设计了基于多级输入输出延迟(IODELAY)单元的时间数字计数器(TDC)算法,时间分辨率高达52 ps。结果表明,系统最大存储带宽为5.12 GByte/s,存储容量为24 TByte,在数据采集和存储上表现出很强的实时性和同步性,有较高的实用价值。

Abstract

This paper presents the design of a high-bandwidth data acquisition and storage system for 3D imaging lidar. To ensure the real-time storage for the system, the data are transmitted to the computer via PCIE 3.0 (peripheral component interface express 3.0), and the echo data are stored in a solid-state drive (SSD) large-capacity disk array. A high-speed signal synchronization trigger circuit and the field-programmable gate array (FPGA) inherent path-delay calibration algorithm are proposed to address the problem that the sampling data of the multiple analog-digital converters (ADCs) in the system are not synchronized. To accurately measure the delay between the laser path trigger pulse and the system clock, a multi-level input-output delay (IODELAY) unit time digital counter (TDC) algorithm is designed with a time resolution of up to 52 ps. The results show that the system has been verified to have a maximum storage bandwidth and capacity of 5.12 GByte/s and 24 TByte, respectively. Further, the system exhibits a strong real-time and synchronization performance for data acquisition and storage and has a high practical applicability.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP274.2

DOI:10.3788/lop56.102801

所属栏目:遥感与传感器

基金项目:国家自然科学基金(61271069)、国家海洋实验室2016开放基金(QNLM2016OPR0411)

收稿日期:2018-11-23

修改稿日期:2018-12-19

网络出版日期:2018-12-25

作者单位    点击查看

吕卫:天津大学电气自动化与信息工程学院, 天津 300072
王粟瑶:天津大学电气自动化与信息工程学院, 天津 300072

联系人作者:王粟瑶(luwei@tju.edu.cn)

【1】Morales J, Plaza-Leiva V, Mandow A, et al. Analysis of 3D scan measurement distribution with application to a multi-beam lidar on a rotating platform[J]. Sensors, 2018, 18(2): 395.

【2】Li M L, Zuo J Z, Zhu J G, et al. Research on dual-channel 3D imaging LiDAR technology[J]. Science of Surveying and Mapping, 2013, 38(3): 49-51.
李孟麟, 左建章, 朱精果, 等. 双通道三维成像激光雷达技术研究[J]. 测绘科学, 2013, 38(3): 49-51.

【3】Li D. Research on 3D imaging technology of airborne lidar[D]. Chengdu: University of Electronic Science and Technology of China, 2012.
李东. 机载激光雷达三维成像技术研究[D]. 成都: 电子科技大学, 2012.

【4】Bai B. Mountain geographic informationextraction technology based on laser radar and remote sensing data[J]. Laser Journal, 2017, 38(4): 150-154.
白彬. 激光雷达与遥感数据的山区地理信息处理技术[J]. 激光杂志, 2017, 38(4): 150-154.

【5】Lü Y K, Wu Y H. Development and key technologies of synthetic aperture ladar imaging[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100004.
吕亚昆, 吴彦鸿. 合成孔径激光雷达成像发展及关键技术[J]. 激光与光电子学进展, 2017, 54(10): 100004.

【6】Mei L. Atmospheric scheimpflug lidar technique and its progress[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090004.
梅亮. 沙氏大气激光雷达技术及其研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090004.

【7】Hu S X, Chen Y F, Liu Q W, et al. Differential absorption lidar system for background atmospheric SO2 and NO2 measurements[J]. Chinese Journal of Lasers, 2018, 45(9): 0911009.
胡顺星, 陈亚峰, 刘秋武, 等. 差分吸收激光雷达系统探测背景大气SO2和NO2[J]. 中国激光, 2018, 45(9): 0911009.

【8】Kong W G, Chen S Y, Zhang Y C, et al. Threshold amendment and time-delay compensation of rotational Raman lidar for atmospheric temperature measurement[J]. Laser & Optoelectronics Progress, 2011, 48(2): 022801.
孔卫国, 陈思颖, 张寅超, 等. 基于转动拉曼测温激光雷达数据采集系统的阈值校正和延时补偿技术[J]. 激光与光电子学进展, 2011, 48(2): 022801.

【9】Zhang Z Y, Mao J D, Sun Y. Design of lidar data acquisition and remote monitoring system based on B/S architecture[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 590-597.
张志勇, 毛建东, 孙颖. B/S架构激光雷达数据采集及远程监控系统设计[J]. 量子电子学报, 2016, 33(5): 590-597.

【10】Zhou Y L. Design and implementation of high speed data transmission and storage system based on FPGA[D]. Chengdu: University of Electronic Science and Technology of China, 2010.
周玉龙. 基于FPGA的高速数据传输及存储系统设计与实现[D]. 成都: 电子科技大学, 2010.

【11】Liu J Z. Design of a dual channel high-speed wideband synchronous data acquisition system[C]∥2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), 16-18 July 2015, Qingdao, China. New York: IEEE, 2015: 295-299.

【12】Lyu Y C, Bai L, Huang X M. Real-time road segmentation using LiDAR data processing on an FPGA[C]∥2018 IEEE International Symposium on Circuits and Systems (ISCAS), 27-30 May 2018, Florence, Italy. New York: IEEE, 2018: 1-5.

【13】Biasizzo A, Novak F. Hardware accelerated compression of LIDAR data using FPGA devices[J]. Sensors, 2013, 13(5): 6405-6422.

【14】Luo Q. The design of acquisition and storage module of 5GSPS oscilloscope[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
罗骞. 5GSPS示波器采集存储模块设计[D]. 成都: 电子科技大学, 2016.

【15】Peng Z F, Wang Y Q. The TDC algorithm design based on fine delay cell of FPGA[J]. Optoelectronic Technology, 2015, 35(3): 165-169.
彭正枫, 王元庆. 基于FPGA精细延迟单元的TDC算法设计[J]. 光电子技术, 2015, 35(3): 165-169.

【16】Li H T, Li B K, Ruan L B, et al. Research on efficient bit testing for high speed and high-resolution ADC[J]. Application of Electronic Technology, 2013, 39(5): 41-43.
李海涛, 李斌康, 阮林波, 等. 高速高分辨率ADC有效位测试方法研究[J]. 电子技术应用, 2013, 39(5): 41-43.

引用该论文

Lü Wei,Wang Suyao. High-Band width Data Acquisition and Storage System for Three-Dimensional Imaging Lidar[J]. Laser & Optoelectronics Progress, 2019, 56(10): 102801

吕卫,王粟瑶. 三维成像激光雷达高带宽数据采集与存储系统[J]. 激光与光电子学进展, 2019, 56(10): 102801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF