激光与光电子学进展, 2019, 56 (10): 101603, 网络出版: 2019-07-04   

光控可调谐多频带太赫兹超材料吸收器的特性 下载: 1263次

Characteristics of Optically Tunable Multi-Band Terahertz Metamaterial Absorber
孟庆龙 1,**张艳 2,*张彬 3尚静 1
作者单位
1 贵阳学院食品与制药工程学院, 贵州 贵阳 550005
2 贵阳学院电子与通信工程学院, 贵州 贵阳 550005
3 四川大学电子信息学院, 四川 成都 610065
摘要
设计了一种光控可调谐且具有多个吸收频带的太赫兹超材料吸收器,并采用CST 2014仿真软件对该吸收器的结构进行了仿真。为实现吸收器从单频带到四频带的完美吸收,在吸收器衬底上设计了4个不同长度的金属条。为深入研究该吸收器的传输特性,分别对该吸收器在4个吸收峰处的电场分布进行了仿真。为了进一步实现该吸收器的光控可调谐,利用抽运激光照射填充在两对金属条中间的光敏介质。仿真结果表明,该吸收器在4个吸收峰处的吸收率均超过了95%,共振机理为4个不同长度的金属条所对应共振频率的线性叠加。该吸收器实现了从四频带到双频带的调控。
Abstract
An optically tunable terahertz metamaterial absorber with multiple absorption bands is designed. The CST 2014 simulation software is used to simulate the structure of the designed metamaterial absorber. We designed four metallic bars with varied lengths on the substrate to realize that the perfect absorption of the designed metamaterial absorber which can be controlled from single-band to dual-band. The electric field distributions at four absorption peaks of the metamaterial absorber is simulated to further study the transmission characteristics of the metamaterial absorber. The photosensitive medium in the gap of two metallic bars is further irradiated by a pump laser to realize the optically-controlled tuning of the absorber. The simulation results show that the absorptivity of the designed metamaterial absorber at four absorption peaks all exceed 95%. The resonance mechanism of the designed structure is attributed to the overlapping of four resonance frequencies corresponding to the four metallic bars with different lengths. Hence, the perfect absorber can be dynamically controlled from four-band to dual-band.

孟庆龙, 张艳, 张彬, 尚静. 光控可调谐多频带太赫兹超材料吸收器的特性[J]. 激光与光电子学进展, 2019, 56(10): 101603. Qinglong Meng, Yan Zhang, Bin Zhang, Jing Shang. Characteristics of Optically Tunable Multi-Band Terahertz Metamaterial Absorber[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101603.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!