首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101603--1)

光控可调谐多频带太赫兹超材料吸收器的特性

Characteristics of Optically Tunable Multi-Band Terahertz Metamaterial Absorber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种光控可调谐且具有多个吸收频带的太赫兹超材料吸收器,并采用CST 2014仿真软件对该吸收器的结构进行了仿真。为实现吸收器从单频带到四频带的完美吸收,在吸收器衬底上设计了4个不同长度的金属条。为深入研究该吸收器的传输特性,分别对该吸收器在4个吸收峰处的电场分布进行了仿真。为了进一步实现该吸收器的光控可调谐,利用抽运激光照射填充在两对金属条中间的光敏介质。仿真结果表明,该吸收器在4个吸收峰处的吸收率均超过了95%,共振机理为4个不同长度的金属条所对应共振频率的线性叠加。该吸收器实现了从四频带到双频带的调控。

Abstract

An optically tunable terahertz metamaterial absorber with multiple absorption bands is designed. The CST 2014 simulation software is used to simulate the structure of the designed metamaterial absorber. We designed four metallic bars with varied lengths on the substrate to realize that the perfect absorption of the designed metamaterial absorber which can be controlled from single-band to dual-band. The electric field distributions at four absorption peaks of the metamaterial absorber is simulated to further study the transmission characteristics of the metamaterial absorber. The photosensitive medium in the gap of two metallic bars is further irradiated by a pump laser to realize the optically-controlled tuning of the absorber. The simulation results show that the absorptivity of the designed metamaterial absorber at four absorption peaks all exceed 95%. The resonance mechanism of the designed structure is attributed to the overlapping of four resonance frequencies corresponding to the four metallic bars with different lengths. Hence, the perfect absorber can be dynamically controlled from four-band to dual-band.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/lop56.101603

所属栏目:材料

基金项目:国家自然科学基金(61505036)、贵州省科技厅基金项目(黔科合J字[2015]2009号)、博士科研启动经费(GYU-ZRD 〔2018〕-012)

收稿日期:2018-11-11

修改稿日期:2018-12-05

网络出版日期:2018-12-13

作者单位    点击查看

孟庆龙:贵阳学院食品与制药工程学院, 贵州 贵阳 550005
张艳:贵阳学院电子与通信工程学院, 贵州 贵阳 550005
张彬:四川大学电子信息学院, 四川 成都 610065
尚静:贵阳学院食品与制药工程学院, 贵州 贵阳 550005

联系人作者:张艳(Eileen_zy001@sohu.com); 孟庆龙(scumql@163.com);

【1】Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

【2】Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

【3】Xu J Z, Zhang X C. Terahertz science technology and application[M]. Beijing: Peking University Press, 2006: 1-5.
许景周, 张希成. 太赫兹科学技术和应用[M]. 北京: 北京大学出版社, 2006: 1-5.

【4】Wang J L, Zhang B Z, Duan J P, et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001.
王俊林, 张斌珍, 段俊萍, 等. 柔性双阻带太赫兹超材料滤波器[J]. 光学学报, 2017, 37(10): 1016001.

【5】Arik K, AbdollahRamezani S, Khavasi A. Polarization insensitive and broadband terahertz absorber using graphene disks[J]. Plasmonics, 2017, 12(2): 393-398.

【6】Lü J, Yuan R Y, Song X M, et al. Broadband polarization-insensitive terahertz absorber based on heavily doped silicon surface relief structures[J]. Journal of Applied Physics, 2015, 117(1): 013101.

【7】Fardoost A, Vanani F G, Amirhosseini A, et al. Design of a multilayer graphene-based ultrawideband terahertz absorber[J]. IEEE Transactions on Nanotechnology, 2017, 16(1): 68-74.

【8】Wang B X, Zhai X, Wang G Z, et al. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics, 2015, 117(1): 014504.

【9】Gao H, Yan F P,Tan S Y, et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene[J]. Chinese Journal of Lasers, 2017, 44(7): 0703024.
高红, 延凤平, 谭思宇, 等. 基于有图案石墨烯的超薄宽带太赫兹超材料吸收体的设计[J]. 中国激光, 2017, 44(7): 0703024.

【10】Hao H G, Ding T Y, Luo W, et al. Design of novel broadband microwave absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061604.
郝宏刚, 丁天玉, 罗伟, 等. 基于超材料的新型宽带微波吸波器设计[J]. 激光与光电子学进展, 2018, 55(6): 061604.

【11】Liu S, Chen H B, Cui T J. A broadband terahertz absorber using multi-layer stacked bars[J]. Applied Physics Letters, 2015, 106(15): 151601.

【12】Wang B X, Zhai X, Wang G Z, et al. Design of a four-band and polarization-insensitive terahertz metamaterial absorber[J]. IEEE Photonics Journal, 2015, 7(1): 1-8.

【13】Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 2010, 27(3): 498.

【14】Zhou J F, Zhang L, Tuttle G, et al. Negative index materials using simple short wire pairs[J]. Physical Review B, 2006, 73(4): 041101.

【15】Zhou J F, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622.

【16】Manceau J M, Shen N H, Kafesaki M,et al. Dynamic response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation[J]. Applied Physics Letters, 2010, 96(2): 021111.

【17】Dai X Y, Xiang Y J, Wen S C, et al. Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb[J]. Journal of Applied Physics, 2011, 109(5): 053104.

【18】Jiang X Q, Yang J Y, Zhan H Z, et al. Photon-induced total-internal-reflection all-optical switches[J]. IEEE Photonics Technology Letters, 2004, 16(2): 443-445.

引用该论文

Meng Qinglong,Zhang Yan,Zhang Bin,Shang Jing. Characteristics of Optically Tunable Multi-Band Terahertz Metamaterial Absorber[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101603

孟庆龙,张艳,张彬,尚静. 光控可调谐多频带太赫兹超材料吸收器的特性[J]. 激光与光电子学进展, 2019, 56(10): 101603

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF