首页 > 论文 > 激光与光电子学进展 > 56卷 > 10期(pp:101402--1)

选区激光熔化所用IN738合金粉末的特性与成形性

Properties and Formability of IN738 Alloy Powder for Selective Laser Melting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

全面表征了气雾化技术制备的IN738合金粉末的物理性能,并分析了该合金粉末粒度分布、颗粒表面粗糙度及粉末和选区激光熔化(SLM)成形件表面形貌和内部组织情况。结果表明,大部分IN738合金粉末呈球形或类球形,粒度呈正态分布,粉末粒径值d10为14.96 μm,d50为28.72 μm,d90为52.85 μm,50 g粉末在流动性测试仪上流过的时间为23.4 s。粉末对激光的吸收率随粉末中颗粒粒径和表面粗糙度的增大而增大;SLM所成形件表面熔道搭接较好,致密度达99.3%。

Abstract

The physical properties of IN738 alloy powder prepared by the gas atomization technology are fully characterized. The particle size distributions, particle surface roughness, surface morphologies and internal structures of the powder and the selective laser melting(SLM)formed parts are analyzed. The results show that most of the IN738 alloy powder is spherical or spheroidal. The particle size distribution is normal with the powder particle sizes d10 of 14.96 μm, d50 of 28.72 μm, and d90 of 52.85 μm. The time used for 50 g powder flowing through a fluidity tester is 23.4 s. The laser absorptivity of powder increases as particle size and surface roughness increase. The surface of the SLM formed part is well lapped and the density reaches 99.3%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249;TF122

DOI:10.3788/lop56.101402

所属栏目:激光器与激光光学

基金项目:甘肃省科技重大专项项目(17ZD2GC001)

收稿日期:2018-12-04

修改稿日期:2018-12-09

网络出版日期:2018-12-20

作者单位    点击查看

杨倩:兰州理工大学材料科学与工程学院, 甘肃 兰州 730050兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 甘肃 兰州 730050
胡勇:兰州理工大学材料科学与工程学院, 甘肃 兰州 730050兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 甘肃 兰州 730050
丁雨田:兰州理工大学材料科学与工程学院, 甘肃 兰州 730050兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 甘肃 兰州 730050
许佳玉:兰州理工大学材料科学与工程学院, 甘肃 兰州 730050兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 甘肃 兰州 730050
杨小康:兰州理工大学材料科学与工程学院, 甘肃 兰州 730050兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 甘肃 兰州 730050
吴栋:兰州理工大学材料科学与工程学院, 甘肃 兰州 730050兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 甘肃 兰州 730050

联系人作者:胡勇(luthuyong@163.com)

【1】Hou W, Chen J, Chu S L, et al. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. Chinses Journal of Lasers, 2018, 45(7): 0702003.
侯微, 陈静, 储松林, 等. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光, 2018, 45(7): 0702003.

【2】Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011401.
杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 011401.

【3】Tran H C, Lo Y L. Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration[J]. Journal of Materials Processing Technology, 2018, 255: 411-425.

【4】Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.

【5】Danis Y, Arvieu C, Lacoste E, et al. An investigation on thermal, metallurgical and mechanical states in weld cracking of Inconel 738LC superalloy[J]. Materials & Design, 2010, 31(1): 402-416.

【6】Kunze K, Etter T, Grsslin J, et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM)[J]. Materials Science and Engineering: A, 2015, 620: 213-222.

【7】Wang D, Qian Z Y, Dou W H, et al. Research progress on selective laser melting of nickel based superalloy[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 49-60, 67.
王迪, 钱泽宇, 窦文豪, 等. 激光选区熔化成形高温镍基合金研究进展[J]. 航空制造技术, 2018, 61(10): 49-60, 67.

【8】Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting[J]. Powder Technology, 2017, 310: 60-66.

【9】Powders M, Flowmeter H, Spectrometry F. Standard guide for characterizing properties of metal powders used for additive manufacturing processes[S]. ASTM International: F3049-14.

【10】Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts[J]. Rapid Prototyping Journal, 2011, 17(3): 195-202.

【11】Engeli R, Etter T, Hvel S, et al. Processability of different IN738LC powder batches by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 229: 484-491.

【12】Engeli R, Etter T, Geiger F, et al. Effect of Si on the SLM processability of IN738LC[C]∥Solid Freeform Fabrication Symposium, Austin, TX, USA. [S.l.:s.n.]. 2015: 823.

【13】Rickenbacher L, Etter T, Hvel S, et al. High temperature material properties of IN738LC processed by selective laser melting (SLM) technology[J]. Rapid Prototyping Journal, 2013, 19(4): 282-290.

【14】Cheng Y W, Guan H J, Li B, et al. Characteristics and applications of metal powders for 3D printing[J]. Materials Review, 2017, 31(29): 98-101.
程玉婉, 关航健, 李博, 等. 金属3D打印技术及其专用粉末特征与应用[J]. 材料导报, 2017, 31(29): 98-101.

【15】Yang Q Y, Wu Y D, Sha F, et al. Characteristic of Inconel 625 alloy powders used in selective laser melting[J]. China Powder Science and Technology, 2016, 22(3): 27-32.
杨启云, 吴玉道, 沙菲, 等. 选区激光熔化用Inconel625合金粉末的特性[J]. 中国粉体技术, 2016, 22(3): 27-32.

【16】Fang P J, Xu Y, Li X G, et al. Influence of atomizing gas and cooling rate on solidification characterization of nickel-based superalloy powders[J]. Rare Metal Materials and Engineering, 2018, 47(2): 423-430.

【17】Metz R, Machado C, Houabes M, et al. Nitrogen spray atomization of molten tin metal: Powder morphology characteristics[J]. Journal of Materials Processing Technology, 2007, 189(1/2/3): 132-137.

【18】Nguyen Q B, Nai M L S, Zhu Z G, et al. Characteristics of Inconel powders for powder-bed additive manufacturing[J]. Engineering, 2017, 3(5): 695-700.

【19】Su P F, Liu Z M, Guo Y, et al. Microstructure and solidification defect of René104 nickel-base superalloy powder atomized by argon gas atomization[J]. Journal of Central South University (Science and Technology), 2018, 49(1): 64-71.
苏鹏飞, 刘祖铭, 郭旸, 等. 氩气雾化René104镍基高温合金粉末的显微组织和凝固缺陷[J]. 中南大学学报(自然科学版), 2018, 49(1): 64-71.

【20】Bergstrom D, Powell J, Kaplan A F H. A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces[J]. Journal of Applied Physics, 2007, 101(11): 113504.

【21】Chen J. Research on absorptivity of laser during laser heat treatments[D]. Hangzhou: Zhejiang University of Technology, 2008: 21-28.
陈君. 激光热处理过程中材料的激光吸收率研究[D]. 杭州: 浙江工业大学, 2008: 21-28.

【22】Zu D L. Electrodynamics[M]. Beijing: Tsinghua University Press, 2006: 1-12.
俎栋林. 电动力学[M]. 北京: 清华大学出版社, 2006: 1-12.

【23】Yan S P, Zhang A F, Liang S D, et al. Measurement of laser light absorptivity of commonly used metals in laser additive manufacturing technique[J]. Aeronautical Manufacturing Technology, 2017(17): 97-100.
严深平, 张安峰, 梁少端, 等. 激光增材制造技术常用金属材料激光吸收率测量[J]. 航空制造技术, 2017(17): 97-100.

【24】Peng R Y, Luo L, Liu Y, et al. Research progress in coaxial powder feeding nozzles[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080004.
彭如意, 罗岚, 刘勇, 等. 同轴送粉器喷嘴研究进展[J]. 激光与光电子学进展, 2017, 54(8): 080004.

【25】Fabbro R, Slimani S, Doudet I, et al. Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding[J]. Journal of Physics D: Applied Physics, 2006, 39(2): 394-400.

【26】Zuo W, Zhang Q M, Wu W J, et al. Microstructure of selective laser melted nickel-based superalloy K4202[J]. Journal of Rocket Propulsion, 2017, 43(1): 55-59.
左蔚, 张权明, 吴文杰, 等. K4202高温合金激光选区熔化成形微观组织研究[J]. 火箭推进, 2017, 43(1): 55-59.

引用该论文

Yang Qian,Hu Yong,Ding Yutian,Xu Jiayu,Yang Xiaokang,Wu Dong. Properties and Formability of IN738 Alloy Powder for Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101402

杨倩,胡勇,丁雨田,许佳玉,杨小康,吴栋. 选区激光熔化所用IN738合金粉末的特性与成形性[J]. 激光与光电子学进展, 2019, 56(10): 101402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF