首页 > 论文 > 中国激光 > 46卷 > 5期(pp:506003--1)

基于级联调制器抽运源的1.7 μm波段宽带光源

Broadband Light Source at 1.7 μm Based on Cascaded-Modulator Pumping

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计实验实现了基于级联调制器抽运源的1.7 μm波段宽带光源。采用连续光源和级联调制器组合的方式,在反常色散区域抽运1 km的高非线性色散位移光纤,产生了超连续谱。经过光纤波分复用器的滤波后,得到了峰值波长为1748.9 nm、输出功率约为22 dBm、20 dB光谱范围为1.6 ~2 μm、相应的谱宽约为419 nm的宽带光源。通过增加Sagnac滤波器,得到了频率周期为2.5 nm、强度周期为9.5 dB的多波长宽带光源。此外,分析了抽运功率、波长及重复频率对超连续谱展宽的影响。

Abstract

We designed and experimentally implemented a broadband light-source at 1.7 μm based on a cascaded-modulator pumping source. We generated supercontinuum by pumping a 1 km highly nonlinear dispersion-shifted fiber in the anomalous dispersion region by using a continuous light source combined with a cascaded-modulator. After filtering by using an optical fiber wavelength-division multiplexer, we obtained a broadband light source with a peak wavelength of 1748.9 nm, an output power of approximately 22 dBm, a 20 dB spectral range of 1.6-2 μm, and a corresponding spectral width of approximately 419 nm. By adding the Sagnac filter, a multi-wavelength broadband light source with a frequency period of 2.5 nm and an intensity period of 9.5 dB was obtained. In addition, we analyzed the effects of pump power, wavelength, and repetition rate on supercontinuum broadening.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/cjl201946.0506003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61705019,91438204)、吉林省青年人才托举工程项目(2017~2018)、吉林省优秀青年人才基金(20170520161JH)、吉林省自然科学基金(20180101338JC)

收稿日期:2018-07-10

修改稿日期:2018-08-09

网络出版日期:2019-02-18

作者单位    点击查看

吴迪:长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
张鹏:长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
李晓燕:长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
王大帅:长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022长春理工大学电子信息工程学院, 吉林 长春 130022
贺振兴:长春理工大学光电工程学院, 吉林 长春 130022
张欣梦:长春理工大学光电工程学院, 吉林 长春 130022
陈俊达:长春理工大学光电工程学院, 吉林 长春 130022
王天枢:长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
张立中:长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
佟首峰:长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:张鹏(zhangpeng@cust.edu.cn)

【1】Hasegawa T, Sogawa I, Suganuma, H. A near infrared angioscope visualizing lipid within arterial vessel wall based on multi-spectral image in 1.7 μm wavelength band[J]. Proceedings of SPIE, 2013, 8575: 857506.

【2】Tanaka M, Okuno T, Obi H, et al. Performance improvement by a broadband super-luminescent diode light source in 1.7-μm spectroscopic spectral-domain optical coherence tomography for lipid distribution imaging in a coronary artery[J]. Proceedings of SPIE, 2014, 8926: 89262T.

【3】Horton N G, Wang K, Kobat D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.

【4】Nguyen T N, Kieu K, Churin D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896.

【5】Lu Y, Li Z L, Wang X Z, et al. Development of 50 kHz intravascular swept source optical coherence tomographic system[J]. Chinese Journal of Lasers, 2017, 44(2): 0207001.
卢宇, 李中梁, 王向朝, 等. 50 kHz血管内扫频光学相干层析成像系统[J]. 中国激光, 2017, 44(2): 0207001.

【6】Bajraszewski T, Wojtkowski M, Szkulmowski M, et al. Improved spectral optical coherence tomography using optical frequency comb[J]. Optics Express, 2008, 16(6): 4163-4176.

【7】Jung E J, Park J S, Jeong M Y, et al. Spectrally-sampled OCT for sensitivity improvement from limited optical power[J]. Optics Express, 2008, 16(22): 17457-17467.

【8】Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

【9】Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]∥2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, July 6-10, IEEE, 2014: 410-411.

【10】Chambers P, Austin E A D, Dakin J P. Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy[J]. Measurement Science and Technology, 2004, 15(8): 1629-1636.

【11】Ono J, Hsu M C, Honda Y, et al. Newly developed 1.7 μm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits[C]∥2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 31 July-4 Aug. 2017, Singapore, Singapore , IEEE, 2017: 1-4.

【12】Jelínková H, Doroshenko M E, ulc J, et al. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 μm[J]. Proceedings of SPIE, 2016, 9726: 97261A.

【13】Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.

【14】Sujecki S, Sójka L, Bere-Pawlik E, et al. Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation[J]. Optical and Quantum Electronics, 2010, 42(2): 69-79.

【15】Daniel J M O, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 2015, 23(14): 18269-18276.

【16】Xiao X S, Guo H T, Yan Z J, et al. 3 W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping[J]. Applied Physics B, 2017, 123(4): 135-138.

【17】Khegai A, Melkumov M, Riumkin K, et al. Mode-locked bismuth fiber laser operating at 1.7 μm based on NALM[C]. Laser Applications Conference on Optical Society of America, 2017: JTu2A.20.

【18】Yamada M, Senda K, Tanaka T, et al. Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region[J]. Electronics Letters, 2013, 49(20): 1287-1288.

【19】Chung H Y, Liu W, Cao Q, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 μm[J]. Optics Express, 2017, 25(14): 15760-15771.

【20】Zhu H Y, Guo J H, Duan Y M, et al. Efficient 1.7 μm light source based on KTA-OPO derived by Nd∶YVO4 self-Raman laser[J]. Optics Letters, 2018, 43(2): 345-348.

【21】Zhang P, Wu D, Du Q L, et al. 1.7 μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission[J]. Applied Optics, 2017, 56(35): 9742-9748.

【22】Chen N, Li B W, Kang J Q, et al. Widely tunable time-division-multiplexed pumped fiber optical parametric oscillator[C]∥Conference on Lasers and Electro-Optics. IEEE, 2016: JTu5A.64.

【23】Becheker R, Tang M, Hanzard P H, et al. High-energy picosecond fiber optical parametric oscillator emitting in the biological window around 1.7 pm[C]∥2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). 25-29 June 2017, Munich, Germany, IEEE, 2017: 1.

【24】Cadroas P, Abdeladim L, Kotov L, et al. All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy[J]. Journal of Optics, 2017, 19(6): 065506.

【25】Wang P, Shi H X, Tan F Z, et al. Tunable femtosecond pulse source from 1.6 to 2.3 μm with 100 kW peak power in an all-fiber system[J]. Chinese Optics Letters, 2016, 14(9): 091405.

【26】Fang X, Wang Z Q, Zhan L. Efficient generation of all-fiber femtosecond pulses at 1.7 μm via soliton self-frequency shift[J]. Optical Engineering, 2017, 56(4): 046107.

【27】Zhang P, Wang T S, Zhang Y, et al. Experimental research on broadband optical source and gain spectrum for optical coherence tomography at 1.7 μm region[J]. Chinese Journal of Lasers, 2016, 43(7): 0701006.
张鹏, 王天枢, 张岩, 等. 光学层析成像用1.7 μm波段增益谱和宽带光源实验研究[J]. 中国激光, 2016, 43(7): 0701006.

【28】Hou J, Chen S P, Chen Z L, et al. Recent developments and key technology analysis of high power supercontinuum source[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080010.
侯静, 陈胜平, 陈子伦, 等. 高功率超连续谱光源研究进展与关键技术分析[J]. 激光与光电子学进展, 2013, 50(8): 080010

【29】Soto M A, Alem M, Amin S M, et al. Optical sinc-shaped Nyquist pulses of exceptional quality[J]. Nature Communications, 2013, 4(1): 2898.

【30】Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 2007.

【31】Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.

【32】Cristiani I, Tediosi R, Tartara L, et al. Dispersive wave generation by solitons in microstructured optical fibers[J]. Optics Express, 2004, 12(1): 124-135.

【33】Gao J. Tunable mode-locked fiber laser pumped supercontinuum source[J]. Optics & Precision Engineering, 2018, 26(1): 25-30.
高静. 可调谐锁模光纤激光器泵浦的超连续谱光源[J]. 光学 精密工程, 2018, 26(1): 25-30.

引用该论文

Wu Di,Zhang Peng,Li Xiaoyan,Wang Dashuai,He Zhenxing,Zhang Xinmeng,Chen Junda,Wang Tianshu,Zhang Lizhong,Tong Shoufeng. Broadband Light Source at 1.7 μm Based on Cascaded-Modulator Pumping[J]. Chinese Journal of Lasers, 2019, 46(5): 0506003

吴迪,张鹏,李晓燕,王大帅,贺振兴,张欣梦,陈俊达,王天枢,张立中,佟首峰. 基于级联调制器抽运源的1.7 μm波段宽带光源[J]. 中国激光, 2019, 46(5): 0506003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF