首页 > 论文 > 中国激光 > 46卷 > 5期(pp:502003--1)

体激光能量密度对选区激光熔化316L不锈钢各向异性的影响

Effects of Bulk Laser Energy Density on Anisotropy of Selective Laser Sintered 316L Stainless Steel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在激光旋转角度为73°,粉层厚度为30 μm的条件下,采用选区激光熔化工艺快速成形316L不锈钢,研究了体激光能量密度及成形方向对成形件组织、性能各向异性的影响。结果表明:成形方向对力学性能的影响极大,力学性能的各向异性随组织的各向异性而变;随着体激光能量密度增加,熔池表面趋于平整,x和y向成形件的晶粒生长方向单一,z向成形件的晶粒生长取向明显;当体激光能量密度为65~85 J·mm-3时,晶体生长方向与堆积方向一致,抗拉强度和断后伸长率最佳。可以利用体激光能量密度控制成形件的组织及性能。

Abstract

Selective laser melting (SLM) is used to rapidly form 316L stainless steels formed when the laser rotation angle is 73° and the powder layer is 30-μm thick, and the effects of bulk laser energy density and forming direction on the anisotropy of microstructure and mechanical properties of the formed parts are studied. The results show that the forming direction has a great influence on the mechanical properties, and the anisotropy of the mechanical property varies with the anisotropy of the microstructure. As the bulk laser energy density increases, the surface of the molten pool tends to be flat, the grain growth directions of formed part become singular in the x and y directions, and the grain growth direction of formed part in the z direction is obviously orientation-dependent. When the bulk laser energy density is 65-85 J·mm-3, the crystal growth direction is well aligned with the stacking direction, and the tensile strength and the percentage elongation after fracture are optimal. Therefore, the bulk laser energy density can be used for controlling the microstructure and mechanical properties of formed parts.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG142

DOI:10.3788/cjl201946.0502003

所属栏目:激光制造

基金项目:国家863计划(2015AA042503)

收稿日期:2018-11-20

修改稿日期:2019-01-29

网络出版日期:2019-02-18

作者单位    点击查看

宗学文:西安科技大学机械工程学院, 陕西 西安 710054
高倩:西安科技大学机械工程学院, 陕西 西安 710054
周宏志:苏州中瑞智创三维科技股份有限公司, 江苏 苏州 215223
张佳亮:西安科技大学机械工程学院, 陕西 西安 710054
齐腾博:苏州中瑞智创三维科技股份有限公司, 江苏 苏州 215223

联系人作者:宗学文(921786797@qq.com)

【1】Cheng X N, Dai Q X. Austenite steel design and control[M]. Beijing: National Defense Industry Press, 2005: 4-5.
程晓农, 戴起勋. 奥氏体钢设计与控制[M]. 北京: 国防工业出版社, 2005: 4-5.

【2】Duan X X, Gao S Y, Gu Y F, et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 2016, 43(1): 0103004.
段晓溪, 高士友, 顾勇飞, 等. 激光熔覆316L+SiC的强化机制和摩擦磨损性能研究[J]. 中国激光, 2016, 43(1): 0103004.

【3】Kruth J P, Froyen L, van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/2/3): 616-622.

【4】Cardaropoli F, Caiazzo F, Sergi V. Evolution of direct selective laser sintering of metals[J]. Advanced Materials Research, 2011, 383/390: 6252-6257.

【5】Wang X C, Laoui T, Bonse J, et al. Direct selective laser sintering of hard metal powders: experimental study and simulation[J]. The International Journal of Advanced Manufacturing Technology, 2002, 19(5): 351-357.

【6】Prashanth K G, Debalina B, Wang Z, et al. Tribological and corrosion properties of Al-12Si produced by selective laser melting[J]. Journal of Materials Research, 2014, 29(17): 2044-2054.

【7】Hufenbach J, Giebeler L, Hoffmann M, et al. Effect of short-term tempering on microstructure and mechanical properties of high-strength FeCrMoVC[J]. Acta Materialia, 2012, 60(11): 4468-4476.

【8】Tolochko N K, Mozzharov S E, Yadroitsev I A, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 10(2): 78-87.

【9】Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.

【10】Ma M M, Wang Z M, Wang D Z, et al. Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel[J]. Optics & Laser Technology, 2013, 45: 209-216.

【11】Yang J , Liu Y D, Shi W T, et al. Optimization and performance study of laser melting process in large layer thickness 316L[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011401.
杨锦, 刘玉德, 石文天, 等. 大层厚316L选区激光熔化工艺优化及性能研究[J]. 激光与光电子学进展, 2019, 56(1): 011401.

【12】Simchi A. Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process[J]. Materials Letters, 2008, 62(17/18): 2840-2843.

【13】Kruth J P, Badrossannay M, Yasa E. Part and material properties in selective laser melting of metals[C]. Proceedings of the 16th International Symposium on Electromachining, 2010: 3-14.

【14】Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods[J]. Materials & Design, 2009, 30(8): 2903-2910.

【15】Wang D, Song C H, Yang Y Q, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials & Design, 2016, 100: 291-299.

【16】Ahmadi A, Mirzaeifar R, Moghaddam N S, et al. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework[J]. Materials & Design, 2016, 112: 328-338.

【17】Liu J H, Shi Y S, Chen K H, et al. Fabrication of alloy parts by composite powders via selective laser sintering[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2006, 34(5): 83-85.
刘锦辉, 史玉升, 陈康华, 等. 选择性激光烧结复合粉末法制造合金零件[J]. 华中科技大学学报(自然科学版), 2006, 34(5): 83-85.

【18】Kruth J P, Froyen L, van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/2/3): 616-622.

【19】Liu T T, Zhang C D, Liao W H, et al. Experimental analysis of pool behavior in overhang structure fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(12): 1202004.
刘婷婷, 张长东, 廖文和, 等. 激光选区熔化成形悬垂结构熔池行为试验分析[J]. 中国激光, 2016, 43(12): 1202004.

【20】Kruth J P, Mercelis P, van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2005, 11(1): 26-36.

【21】Suryawanshi J, Prashanth K G, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel[J]. Materials Science and Engineering A, 2017, 696: 113-121.

【22】Xiao D M, Yang Y Q, Su X B, et al. Topology optimization of microstructure and selective laser melting fabrication for metallic biomaterial scaffolds[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(10): 2554-2561.

【23】Blackwell P L. The mechanical and microstructural characteristics of laser-deposited IN718[J]. Journal of Materials Processing Technology, 2005, 170(1/2): 240-246.

【24】Wang D, Yang Y Q, He X R, et al. Fiber laser selective melting of 316L stainless steel powder[J]. High Power Laser and Particle Beams, 2010, 22(8): 1881-1886.
王迪, 杨永强, 何兴容, 等. 316L不锈钢粉末光纤激光选区熔化特性[J]. 强激光与粒子束, 2010, 22(8): 1881-1886.

引用该论文

Zong Xuewen,Gao Qian,Zhou Hongzhi,Zhang Jialiang,Qi Tengbo. Effects of Bulk Laser Energy Density on Anisotropy of Selective Laser Sintered 316L Stainless Steel[J]. Chinese Journal of Lasers, 2019, 46(5): 0502003

宗学文,高倩,周宏志,张佳亮,齐腾博. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响[J]. 中国激光, 2019, 46(5): 0502003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF